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ABSTRACT: We analyze the solutions of a population model with diffasémd strong Allee effect. In particular, we
focus our study on a population that satisfies a certain neati boundary condition and on its survival when constant
yield harvesting is introduced. We discuss, in detail, ltssor the one-dimensional case.
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1 INTRODUCTION

Reaction diffusion equations which describe the spatiptaal distributaries and abundance of organisms are often
portrayed by the model _
ur = dAu~+ uf(x,u)

whereu(z, t) is the population density] > 0 is the diffusion coefficient/Aw is the Laplacian of: with respect to the
variablez, andf(a:, u) is the per capita growth rate which is influenced by the hegmous environment. Skellam first
studied such ecology models in [25]. Various reaction diffa biological models have been studied by [16], previgusl
though the most classic example is Fisher’s equation (sgeVidth f(x,u) = (1 — u). Later, several reaction diffusion
models have been used to describe spatiotemporal phendomesréous disciplines such as hiology, physics, chemistry
and ecology, (see [5], [11], [21], [22], and [26]). Skellarasithe first to use the logistic growth ratér, u) = m(z) —
b(z)u in population dynamics to model the crowding effect. Howe®gegeneral logistic type model can be described
by a declining growth rate per capita function, such tf‘(an u) is decreasing with respect to The Allee principle, or
Allee effect ([1], [2], [10], [19], and [24]), describes ancirease in per capita growth rate at low population dessitie
can either be strong or weak. For example, if the per capdatrrate is negative at low population densities the Allee
effectis strong. On the other hand, if the per capita groaté is positive at low population densities it is weak. There
many contributing factors to Allee effect in population dymics, including inbreeding depression, predator saturat
less efficient feeding at low densities, shortage of mases, df effective pollination, cooperative behaviors, aeduced
effectiveness of vigilance and antipredator defenses.

Several types of nonlinear boundary conditions have bgeorted in the literature. We examine a boundary in which
«, the fraction of individuals who do not cross the boundanewit is reached, is a function of the population density
itself. This leads to the following boundary condition

a(z,u) = S
T u—dVu g
or equivalently,
do(z,u)Vu-n+[1—a(z,u)]u=0 (1)

whereVu - i is the outward normal derivative af. If «(z,u) = 0 then (1) becomes the Dirichlet boundary condition,
i.e. all individuals that reach the boundary leave the bamndWhile, if a(z,u) = 1 then (1) becomes the Neumann
boundary condition, i.e. all individuals that reach the tdary remain. This boundary condition has only been regentl
considered in population dynamics by [5], [6], [7], [14],cafll5]. The authors in [17] have also studied a logistic
population model with (1).

In this paper, we initiate study of a one-dimensional popatamodel with Strong Allee effect, nonlinear boundary
condition, and constant yield harvesting on a bounded donaiC R. Throughout the literature, density dependent
harvesting has been considered extensively, howevertardngeld harvesting is popular in disciplines like fislesri
management where harvesting is well regulated. Our maihigt@examine the steady state solutions whHea 1 and

a(z,u) = {0; v=0
%; z =1
Namely, we study,
—u" = —u®+ (a+b)u’ —abu—c:= f(u); (0,1)
uw(0) = 0
—u(D)u' (1) + [u(l)—blu(l) =0, @
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where0 < a < b, ¢ > 0 is the constant yield harvesting term, an¢r,u) : © x [0,00) — [0,1] is a smooth,
nondecreasing function af. In the literature, (2) is known as a semipositone problencesf(0) < 0 whenc > 0.

Finding positive solutions to such problems is challendsee [3], [20], and [23]). Clearly, studying (2) is equivai¢o

analyzing the two boundary value problems

" = W4+ (a+ b)u2 —abu—¢; x€(0,1)

u(0) = 0

w(l) = 0 @)
and

" = -4+ (a+ b)u2 —abu—¢; x€(0,1)

u(0) = 0

w'(1) = wu(l)—b 4

In particular, the positive solutions of (3) and (4) are tbsifive solutions of (2). Using the Quadrature method oftkele
(see [18]) the structure of positive solutions of (3) canduenfl with the aid of Mathematica. In Section 2 we discuss an
adaptation of this Quadrature method for (4). Finally, catafional results for (2) will be presented in Section 3.

2 QUADRATURE METHOD FOR (4)

The Quadrature method developed by Laetsch (see [18]) lessused extensively in the past by authors such as, [4], [8],
[13], and [14], among others. We note that Ladner et. al, idbihe Quadrature method for similar boundary conditions
with Logistic growth, see [17]. In this section, we furthetagt the Quadrature method to analyze the structure of
positive solutions to (4). Defing€'(u) = fo" f(s)ds, the primitive of f(u). Suppose that(x) is a positive solution of

(4) with v/ (zo) = 0, for somexo € (0,1). Since (4) is an autonomous differential equatio(y) := u(xo + z) and
w(zx) := u(xo — x) both satisfy the following initial value problem

-2 = f(2)
z(0) = wu(o)
Z(0) = 0 (5)

for all z € [0, d) such thatd = min{zo,1 — zo}. From this, we have that(zo + =) = u(xo — z) as a consequence
of Picard’s existence and unigqueness theorem. Hemge), is symmetric aboutzo and must have the general shape
displayed in Figure 1.

I =, e — =

Xo 1

Figure 1: General shape of positive solution to (4).

wherep = u(zo) = ||u||oo andg = u(1). It follows thatly < p < ¢2 and0 < ¢ < p with u’(z) > 0 for all z € [0, o]
andv’(z) < 0 for all x € [z, 1], whereQ < ¢1 < ¢ are the positive real zeros ¢fz). Multiplying the differential
equation in (4) by’ and integrating with respect tothen gives,

(22
0P e ®
Substitution ofr = z into (6) while using the fact that(z¢) = p andu’(zo) = 0 yields
K = F(p). (7)
Also, substitutinge = 1 into (6) and recalling that(0) = 0, u(1) = ¢, andu’(1) = g — b gives
—p)?
K = p(g)+ 420 (®)

Combining (7) with (8) we have that

Fp) = Flq) + 457 ©
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Now, solving foru’ in (6) yields,

u(x) = 2[F(p) — F(w)]; =€ [0, 0] (10)
d(@) = —V2AF(p) - F@)]; @€ [ao, 1. (11)
This implies that,
& _ \/_ T Zo 12
Mo - o e 2
& = V2 =z o, 1]. 13
ORI ;€ (20,1 (13)

Integration of (12) and (13) with the use of the first boundaowdition of (4) gives

u(z) ds
AN OEr N V2, z €0,z (14)
e ds = —V2(z—z0); z€ [z0,1]. 15)

p VF(p)—F(s)

After substitution ofr = z¢ in (14) andx = 1 in (15), we obtain

P ds
- = \/5:60, x 07500 16
o VG - F0) €[00 ae
a ds
- = —\/51—,’1}0; X Zl’,l. 17
/p VEG) - F(3) (=) el 0

Finally, subtraction of (17) from (16) gives,

= V2 (18)

P ds d ds
/ VED) - FG) / VEG) - Fs)
ds

VF(p)—F(s)

integral is convergent if (p) > 0. Hence, such a positive solution existsfifu) and F'(u) resemble Figures 2 and 3
respectively,

Notice that in order forf’ to be well definedF'(p) > F'(s) for all s € [0, p). Additionally, the improper
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Figure 2: Graph off (u). Figure 3: Graph of"'(u).
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3

wherepus, ¢;, andd; are the zeros of’(u), f(u), andF(u) respectively fori = 1,2. From these figures, we note that
if p € (01, £2) then both of these conditions hold and the integrals in (i8weell defined. From this and letting (via
solving using Mathematica)

= —i(a—2b+ Va2 —ab+b?)(—2a+b+ va? —ab+ b?)

27

(a+b+4++va?—ab+b?)

and

\/2(8a2 — 11ab + 8b2)3 + 2(a + b)(16a* — 49ab + 16b%)
729

C2 =

we establish the following:
Theorem 1. If b < 2a then (4) has NO positive solution, for any> 0.

Theorem 2. If b > 2a then (4) has NO positive solution for> c¢*(a, b), wherec* (a,b) = min {c1, c2}.
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Furthermore, we note that giverpa> 0, zo € (0, 1) is fixed. Thus we need a uniqyecs [0, p) corresponding to each
p-value such that (9) is satisfied. Otherwise, uniquenesslofigns to the initial value problem, (5), would be violdte
Let

(z —b)?

2
We see that1 (0) = &, H'(z) = —a® + (a+b)? + (1 —ab)z — c— b, andH'(0) = —c—b < 0. For a unique solution,
q € [0, p), of (9) to exist,H (x) must have the structure exemplified in Figure 4,

H(z):= F(z)+

HX)

H (mg)
F(p)

bZ
2

Figure 4: Graph of H(x).

wherems (a, b, c) is a zero off’ (). So, for such a uniqugto existF'(p) > % must be satisfied. Sindé (¢2) > F(¢2),

it follows that this will happen if and only if
2

b
F(fg) > ?

In particular,F'(¢2(a, b, c)) > % must be satisfied. Butt = <2 f(¢5(a,b,c)) + f(f

necessary that'(¢2(a,b,0)) > % After solving using Mathematica, this becomes

291 dt = —t, < 0. Hence, itis

b>bi:=a++Va*>+6
which leads to the following results:

Theorem 3. If b > a + v/a? + 6 then (4) has NO positive solution foer> ¢**(a, b), wherec™(a,b) < min{ci,c2} is
the unique root of"(£x(a, b, c)) = &

Theorem 4. If b > a++/a? + 6 andc < ¢**(a, b) then there exists an uniquéa, b, ¢) € (61, £2) such thatF'(r) = %
Moreover, ifp € [r, £2) then

Gloap)i= [ e+ [
o VE(p)=F(s)  Jap VF(p) = F(s)
is well defined. In this casg,= ¢(p) < p is the unique solution af'(p) = H(q).

We now state and prove this section’s main result.

Theorem 5. Letb > a + va?+6 andc < ¢**(a,b). Then (4) has a positive solution(z), with ||u|l.. = p and
u(1) = gifand only ifG(p, q) = V2 for p € [r,£2) andq € [0, p).

Proof.leta,b > 0s.t.b > a + va? + 6 andc < ¢**(a, b)
(=) shown through preceding discussion.

(<=:) supposel(p) = /2 for somep € [r, £2).
Defineu(z) : (0,1) — R by

u(x)

S B V2z;  x €0, 20]
o VEG) ()
u(x) ds

—V2(z — x0); x € [20,1]. (29)

p VE(p) = F(s)

We now show that:(x) is a positive solution to (4). Clearly, the turning poiat, is given by

To

1 i ds
V2 / VEQ) — F(s)



154 J. Goddard Il and R. Shivaji

Note that the function/% [*“(") ——ds
V2 /0 F(p)—F(s)

asu increases frond to p. Thus, for each: € [0, zo], there exists a unique(z) that satisfies
u(x) ds

, is a differentiable function ofi which is strictly increasing from to xo

—_— = 2z. (20)
o VF(p) - F(5)
(21)
Moreover, by the Implicit Function theorer,is differentiable with respect te. Differentiating (20) gives,
W(x) = V2[F(p) - FW); = €0, (22)
Similarly, u is a decreasing function aof for = € [zq, 1] which yields,
u'(z) = —V2(F(p) = F(w)]; =€ [zo,1] (23)
Combining (22) with (23) we arrive at
_ u/ 2
W = ()~ ()

Differentiating once more, we have,

—u(z) = f(u(z)).
Henceu(x) satisfies the differential equation in (4). Also, cleaul{p) = 0, fulfilling the first boundary condition of (4).
Now, from our assumption/(p) = /2, it follows thatu(1) = g(p). SinceF(p) = H(q(p)) = F(q) + @ we
have that

u'(1) = —V2[F(p) - F(q)]

=u'(1) = u(1) — b.
Thus, the second boundary condition in (4) is satisfied.
O

3 COMPUTATIONAL RESULTS

In this section, we present computational results to (2)dyluning the positive solutions from (3) and (4). For what
follows, we are particularly interested in the case whesa 1. For (3), the structure of positive solutions is known (see
[9] where the authors ascertained the structure of possihetions via the standard Quadrature method). For (4), we
recall Theorem 5 from section 2, and we provide an evolutiomhe bifurcation curve of positive solutions by plotting
the level sets of
Glp,q) —V2=0 (24)
for p € [r,¢2). A numerical root-finding algorithm was implemented in Mathatica to solve equation (24). Due to the
nature of the improper integrals @(p, ¢), the procedure was computationally expensive. Combirgsglts from the
two cases, (3) and (4), we are able to analyze the positivgigos of (2). Our computational results for the case 1
suggest the following results.
Case 1.Fora = 1, if b < by (someb; = 4.77217) then (2) has NO positive solution for every> 0.
Also, our computations indicate the following existenceutes fora = 1.

Case 2.Fora =1, if b € [b1, b2] (SOMeb2 = 5.04013) then there exists & > 0 such that if

(1) 0 < ¢ < cpthen (2) has exactly 2 positive solutions.

(2) ¢ = c¢o then (2) has a unique positive solution.

(3) ¢ > co then (2) has NO positive solution.
Figure 5 shows an example of Case 2.

38

L L L L L L L
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
c

Figure 5:pvscfora =1,b = 4.78.
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Case 3.Fora =1, if b € (b2, bs] (somebs = 5.75907) then there exidh < ¢y < ¢; such that if

(1) co < ¢ < c1then (2) has exactly 2 positive solutions.
(2) 0 < ¢ < cpore=cithen (2) has a unique positive solution.
(3) ¢ > c1 then (2) has NO positive solution.

Figure 6 exemplifies Case 3

4.8

L L L L L L L L
0 0.2 0.4 0.6 0.8 1 12 14 16 18

Figure 6:pvscfora=1,b=>5.1.

Case 4.Fora = 1,if b € (b3, bs) (SOmebs = 7.51988) then there exists a > 0 such that if
(1) 0 < ¢ < ¢ then (2) has a unique positive solution.
(2) ¢ > co then (2) has NO positive solution.

Figure 7 illustrates Case 4.

108 ‘ ‘ ‘ ‘ ‘ 9
0 20 40 60 80 100 120

c

Figure 7:pvscfora =1,b = 12.

Case 5.Fora =1, if b € [bs, bs] (Somebs =~ 13.128) then there exidh < ¢y < ¢1 such that if

(1) 0 < ¢ < cothen (2) has exactly 3 positive solutions.
(2) ¢ = ¢o then (2) has exactly 2 positive solutions.

(3) co < ¢ < ¢ then (2) has a unique positive solution.
(4) ¢ > c1 then (2) has NO positive solution.

Figures 8 and 9 show examples of this case.
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Figure 8:pvscfora =1,b=38.
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——Nonlinear B.C.
— Dirchlet B.C.
2 . . . .

L L L
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c

Figure 9:pvscfora =1,b=13.12.

Case 6.Fora = 1,if b € (bs,bs) (Somebs € (13.128,13.128 + ¢) wheree > 0 is small) then there exi$t < co <
c1 < ¢z such that if

(1) 0 <c<cpore <c<cathen (2) has exactly 3 positive solutions.

(2) co < ¢ < c10re=cathen (2) has exactly 2 positive solutions.

(3) c2 < ¢ < c3then (2) has a unique positive solution.

(4) ¢ > c3 then (2) has NO positive solution.
Figures 10 and 11 show examples of this case.

—Nonlinear B.C.
— Dirchlet B.C.

L L L
0 20 40 60 80 100 120 140 160 180 200
c

Figure 10:p vsc for whena = 1, b = 13.5.

——Nonlinear B.C.
—Dirchlet B.C.

L L
100 120 140 160 180 200
c

Figure 11:p vsc forwhena =1, b = 14.

Remark 1. For b > 14, we were unable to computationally generate bifurcatiorves for (4). This is due to the fact
that for b large, thep—values are too close to their upper bourid,
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