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h i g h l i g h t s

• This study concerns ultrasonic measurement of residual stress induced by low plasticity burnishing (LPB).
• An aluminum thick-plate sample surface-treated by LPB serves as primary example.
• Using Rayleigh-wave dispersion to infer near-surface depth profile of the stress is studied.
• Such inference is possible if velocity measurements have ±0.1% accuracy and stress is the only unknown.
• The usable frequency window where ∆v/v ≈ ±0.1% determines the depth above which the stress-profile can be inferred.
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a b s t r a c t

Herein we study the inverse problem on inferring depth profile of near-surface residual
stress in a weakly anisotropic medium by boundary measurement of Rayleigh-wave
dispersion if all other relevant material parameters of the elastic medium are known. Our
solution of this inverse problem is based on a recently developed algorithm by which each
term of a high-frequency asymptotic formula for dispersion relations can be computed for
Rayleigh waves that propagate in various directions along the free surface of a vertically-
inhomogeneous, prestressed, and weakly anisotropic half-space. As a prime example of
possible applications we focus on a thick-plate sample of AA 7075-T651 aluminum alloy,
which has one face treated by low plasticity burnishing (LPB) that induced a depth-
dependent prestress at and immediately beneath the treated surface. We model the
sample as a prestressed, weakly-textured orthorhombic aggregate of cubic crystallites and
assume that by nondestructive and/or destructive measurements we have ascertained
everything about the sample, including the LPB-induced prestress, before it is put into
service. Under the supposition that the prestress be partially relaxed but other material
parameters remain unchanged after the sample undergoes a period of service, we examine
the possibility of inferring the depth profile of the partially relaxed stress by boundary
measurement of Rayleigh-wave dispersion.
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1. Introduction

A common practice to provide lifetime enhancement against fatigue and stress-corrosion cracking of metallic parts
(e.g., critical components of aircraft engines, welds in steel structures, etc.) is to impart, through surface-conditioning
treatments such as shot peening, sand blasting, laser peening, and low plasticity burnishing, a thin surface layer of
compressive residual stress on the parts so treated. The protective compressive stress induced by surface conditioning,
however, may relax as a result of thermomechanical loadings experienced by the treated part after it is put into service, thus
compromising the very purpose of the surface-conditioning treatment. To ensure safety and performance, a nondestructive
technique should be developed so that retention of the protective compressive stress in the treated parts can be monitored
in-situ from time to time, thereby providing a basis for deciding whether a treated part should be taken out of service for
replacement or re-conditioning treatment.

The layer of compressive residual stress induced by surface treatment typically starts from the surface and, depending on
the specific surface-conditioning technique and processing parameters, runs to a depth that ranges from 0.3 mm to roughly
2 mm. The residual stress T

◦
thus created varies with depth from the surface. At the free surface the principal stress of

T
◦
which has the free surface as principal plane is zero. If another principal stress of T

◦
is plotted against depth from the

surface, the graph typically assumes the shape of a check mark with a long tail (see Fig. 2 in Section 5.1): the principal stress
starts negative (i.e., compressive) at the surface and goes through a quick dip, then after a blunt turn at a minimum value
(i.e., maximum compressive stress) increases monotonically until it becomes slightly tensile and reaches a maximum, and
then decays in a long tail to approximately zero while remaining tensile. For life-prediction purposes, monitoring of not
only the surface residual stress but also the profile and depth of penetration of the protective stress layer (particularly the
maximum compressive principal stresses and their locations) are required, because they all strongly affect the fatigue life
and corrosion-crack resistance of the treated part.

The presence of stress in a body affects the velocities of elastic waves propagating in it. This phenomenon is called the
acoustoelastic effect. There is ample experimental evidence (see, for example, [1,2]) that the presence of a surface layer
of inhomogeneous residual stress in an otherwise homogeneous medium will lead to the dispersion of Rayleigh waves,
the quantitative data of which can be ascertained by boundary measurements. In this paper we shall explore whether we
could monitor the retention of the surface-treatment induced layer of protective compressive stress by measurements of
Rayleigh-wave dispersion.

Besides inhomogeneous stress, there are other material characteristics (e.g., inhomogeneity in crystallographic texture,
surface roughness) of a treated part that will lead to dispersion of Rayleigh waves, often with effects comparable to or
stronger than those due to initial stress (see, e.g., [3,4]). Should some such characteristic have also changed after the treated
part is put in service, other measurements in addition to Rayleigh-wave dispersion would be needed to infer the depth
profile of the stress. As a first step towards the development of an ultrasonic technique for monitoring stress retention in
surface-treated samples, here we will restrict our discussion to the following simple situation: Except for the unknown
depth-dependent residual stress, all other relevant material parameters are known. One scenario where this could happen
is that we have ascertained all relevant material characteristics of the treated sample, including the residual stress imparted
by surface-conditioning, before the sample is put into service.1 After a period of service, the protective residual stress may
have suffered from partial or total relaxation, but all other material characteristics of the treated sample remain unchanged
after its production.

Under the theoretical framework of linear elasticity with initial stress [5–8], Man et al. [9] recently presented a general
procedure for obtaining a high-frequency asymptotic formula for the dispersion of the phase velocity of Rayleigh waves
propagating in a vertically-inhomogeneous, prestressed and anisotropic half-space. As a further development, the general
procedure given in [9] was adapted by Tanuma et al. [10] to the casewhere the incremental elasticity tensorL can bewritten
as the sum of an isotropic part CIso and a perturbative part A. Under a Cartesian coordinate system where the material
medium occupies the half-space x3 ≤ 0, the perturbative part A(·), the initial stress T

◦
(·), and the mass density ρ(·) are

assumed to be smooth functions of x3. Moreover, the following linearization assumption (*) is made: at the free surface
x3 = 0 of the material medium the perturbative part A(0) and the initial stress T

◦
(0) are sufficiently small as compared

with CIso that for all expressions and formulas which depend on A(0) and T
◦
(0) it suffices to keep only those terms linear in

the components of these tensors. Under this setting, specific formulas are derived [10] with which the procedure presented
in [9] can be implemented to compute iteratively each term of a high-frequency asymptotic formula for dispersion relations
that pertain to Rayleigh waves with various propagation directions. Thus for Rayleigh waves of sufficiently high frequencies,
dispersion curves can be generated by the method developed in [10] when requisite data on material and stress are given.
Once we have that capability, the inverse problem of inferring stress retention from Rayleigh-wave dispersion can be solved
by an iterative approach.

The theory developed in [10] is meant for applications that include as typical example ultrasonic measurement of stress
in metal structural parts, where the perturbative part A in the splitting L = CIso

+ A of the incremental elasticity tensor is

1 In manufacturing practice a large number of samples are produced under virtually the same conditions, and quality-control procedures are in place to
ensure that all the samples have nominally the samematerial characteristics. Bywasting some samples if necessary, all the relevantmaterial characteristics
of a typical sample can be determined by suitable destructive and/or nondestructive measurements.
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originated from the presence of crystallographic texture and of the prestress T
◦
. Moreover, the shifts in phase velocities of

elasticwaves caused by texture and initial stress (with the latter bounded by the yield surface) are typicallywithin 2% of their
values for the corresponding isotropic medium with L = CIso, which suggests that linearization assumption (*) would be
adequate. On the other hand, the theory developed in [10] does not take into consideration the effects of surface roughness
on Rayleigh-wave dispersion. Several empirical studies (see e.g., [3,4]) have shown that if Rayleigh-wave dispersion is used
for measurement of stress induced by shot-peening or laser-shock peening, the effect of surface roughness on the dispersion
curves cannot be ignored, for it can totally mask the dispersion due to inhomogeneous stress. Surface conditioning by low
plasticity burnishing (LPB), however, is different, for LPB leaves amirror-smooth finish on processed parts. For the dispersion
of Rayleigh waves which have frequencies suitable for interrogation of the compressive stress induced by LPB treatment,
surface roughness is not an issue (cf. Fig. 17 of [4], where dispersion curves of several IN100 nickel-base superalloy specimens
surface-treated by LPB, shot peening, and laser-shock peening are shown in comparison). In this paperwewill study as prime
example thepossibility of using thehigh-frequency formula for Rayleigh-wavedispersiondeveloped in [10] to infer retention
of near-surface compressive stress in a thick-plate sample of an AA 7075-T651 aluminum alloy which was surface-treated
by low plasticity burnishing (LPB).

The plan of this paper is as follows. In Section 2 we present, within the context of linear elasticity with initial stress,
the constitutive equation of a prestressed medium which is a polycrystalline aggregate of cubic crystallites that carries an
orthorhombic texture. Details onmaterial parameters and texture coefficients specific to the aluminumsample,which serves
as the prime example of our present study, are given in Appendix A. In Section 3, after we briefly outline the procedure given
in [10] to arrive at a high-frequency asymptotic formula for Rayleigh-wave dispersion,we present a theoremand its corollary
which will be instrumental for reducing the inverse problem in question to solving systems of linear equations iteratively.
Section 4 is devoted to a statement of the inverse problem onmonitoring of stress retention and its solution. In Section 5, we
apply the theory to a specific inverse problem pertaining to the aluminum sample. There, in Sections 5.2–5.4, we describe
how ‘‘experimental’’ data on Rayleigh-wave dispersion are simulated over the frequency window from 4 MHz to 70 MHz,
with the assumption that ‘‘measured’’ phase velocities have accuracy of ±3m/s (i.e., ±0.1%), where we explain also the
rationale behind our choice of frequency window and of the assumed ‘‘measurement’’ accuracy. In Section 5.5, we use the
third-order approximation of the dispersion relations to infer the depth profile of the residual stress. In our example the
inferred and ‘‘real’’ stress profiles match well for the range of depth from 0 to 0.7 mm. In Section 6, we examine the scenario
in which experimental conditions (e.g., diffraction errors) rule out the use of data at frequencies lower than 7 MHz. We use
the second-order approximation of and the simulated data on the dispersion relations over the frequency window from 7
to 70 MHz to infer the stress profile. Our example shows that the inferred and ‘‘real’’ stress profiles match quite well for the
range of depth from 0 to 0.5 mm. We end the paper with some closing remarks in Section 7.

2. Constitutive equation

The thick-plate sample in question (see [11] for details on sample preparation) is that of anAA7075-T651 aluminumalloy,
one face of which was surface-treated by low plasticity burnishing (LPB). The LPB-treatment, in general, would introduce
a depth-dependent residual stress, which is compressive at and near the treated surface. It would also induce changes in
material properties (e.g., elastic and acoustoelastic constants) which, in the engineering literature, are qualitatively referred
to as the effects of ‘‘cold work’’. In the theory that we adopt in this paper, such effects are described quantitatively as being
caused by changes in surface and near-surface crystallographic texture.

We model the LPB-treated aluminum sample as a prestressed and textured polycrystalline medium, which occupies the
half-space x3 ≤ 0 under a spatial Cartesian coordinate system OXYZ with x3 = 0 being the treated surface whereas the 1-
and 2-axis are chosen arbitrarily. We assume that the prestress and all material properties of the polycrystalline medium
be macroscopically homogeneous with respect to planar translations for a fixed x3, but they may vary with x3. In what
follows, dependence of material tensors, prestress, and texture on x3 will be suppressed except on occasions when we want
to emphasize that dependence.

Let the lattice of a fixed single crystal be chosen as reference. The lattice orientation at a sampling point in the
polycrystallinemedium is specified by a rotation R which brings the reference lattice to the lattice at the sampling point. The
crystallographic texture [12–14] of a material point in the plane defined by x3 is characterized by an orientation distribution
function (ODF) w(x3) defined on the rotation group SO(3).2 Following the convention adopted by Roe [13], we endow SO(3)
with volume measure g = 8π2℘H , where ℘H is the Haar measure with ℘H (SO(3)) = 1. The ODF w can be expressed as an
infinite series in terms of the Wigner D-functions [16,17]:

w(R) =
1

8π2 +

∞∑
l=1

l∑
m=−l

l∑
n=−l

c lmnD
l
mn(R). (2.1)

2 That the ODF is defined on the rotation group is a basic assumption in the classical theory of texture analysis as formulated by Bunge [12] and
Roe [13]. Under this assumption crystallite symmetries are described by subgroups of SO(3), which would nominally exclude the common structural
metals (e.g., aluminum, copper, iron, titanium) from consideration. On the other hand, as far as the present study is concerned, the classical theory and a
more general theory [15] with the ODF defined on the orthogonal group O(3) lead effectively to the same constitutive formulas (2.12) and (2.13).
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Following Roe, in this paper we work with

Wlmn = (−1)n−m

√
2

2l + 1
c lmn (2.2)

instead of c lmn, and we call them the texture coefficients. If the crystallites in the polycrystal have no preferred orientations,
all the texture coefficients vanish and the ODF reduces to

w = wiso ≡
1

8π2 . (2.3)

We assume that elastic deformations superimposed on the given polycrystallinemedium can be adequately described by
the theory of linear elasticity with initial stress [5–7]. The general constitutive equation in that theory can be written [7,8]
as

S = T
◦

+ H T
◦

+ L[E]; (2.4)

here S =
(
Sij

)
is the first Piola–Kirchhoff stress, T

◦
=

(
T
◦
ij
)
the initial stress, H =

(
∂ui/∂xj

)
the displacement gradient

pertaining to the superimposed small elastic motion, and E = (H +HT )/2 the corresponding infinitesimal strain, where the
superscript T denotes transposition; L is the incremental elasticity tensor which, when regarded as a fourth-order tensor on
symmetric tensors, has its components Lijkl (i, j, k, l = 1, 2, 3) satisfy themajor andminor symmetries. Motivated by Hartig’s
law on the affine dependence of the Young’s modulus with strain—an empirical finding supported by ‘‘wholly independent,
individual experiments from 1811 to the present ... for one solid after another, including all of the metals’’ ([18], p. 155), for
the prestressed and textured polycrystalline mediumwe regard [19,20] L as a function of the ODF w and the initial stress T

◦
,

and we write

L[E] = L(w, T
◦
)[E] = C(w)[E] + D(w)[T

◦
, E], (2.5)

where C is the fourth-order elasticity tensor defined on symmetric tensors E , and D is the sixth-order acoustoelastic tensor
defined on ordered pairs of T

◦
and E , and we replace the functions C(·) and D(·), respectively, by their affine approximation:

C = C(w) = C(wiso) + C′(wiso)[w − wiso], (2.6)
D = D(w) = D(wiso) + D′(wiso)[w − wiso], (2.7)

where C′(wiso) and D′(wiso) denote the Fréchet derivative of C and D at w = wiso, respectively. Note that the fourth-order
tensor C′(wiso)[w − wiso] and the sixth-order tensor D′(wiso)[w − wiso] depend linearly on the texture coefficients.

When the initial configuration is stress-free and the constituting crystallites have no preferred orientations, i.e., T
◦

= 0
and w = wiso, the incremental elasticity tensor L reduces to the elasticity tensor of classical isotropic elasticity given by

C(wiso)[E] = λ(trE)I + 2µE, (2.8)

where λ and µ are the Lamé constants. From (2.5)–(2.8), we observe that the incremental elasticity tensor can be expressed
as

L = CIso
+ A, (2.9)

where CIso
= C(wiso) and

A[·] = D(wiso)[T
◦
, ·] +

(
C′(wiso)[w − wiso]

)
[·] +

(
D′(wiso)[w − wiso]

)
[T
◦
, ·]. (2.10)

The isotropic sixth-order tensor D(wiso) is given by the representation formula [19]

D(wiso)[T
◦
, E] = β1(tr E)(tr T

◦
)I + β2(tr T

◦
)E + β3

(
(tr E)T

◦
+ (tr ET

◦
)I
)

+ β4(ET
◦

+ T
◦
E), (2.11)

where βi (i = 1, . . . , 4) are material constants. Aluminum single crystals have cubic crystal symmetry specified by
point group Oh. As far as the effects of crystallographic texture on the even-order tensors

(
C′(wiso)[w − wiso]

)
[·] and(

D′(wiso)[w − wiso]
)
[T
◦
, ·] are concerned, we may use classical texture analysis and treat [15] the aluminum crystallites as if

their point group were O, the proper point group in the same Laue class as Oh.
The surface and near-surface (up to a depth of 0.225 mm) crystallographic texture of the sample at the LPB-treated

face were measured by X-ray diffraction and serial sectioning. The texture was found to be essentially constant with depth
and was orthorhombic with one of the 2-fold axes of rotational symmetry parallel to OZ . In the present paper we simply
assume that the sample has a homogeneous texture. Let OX ′Y ′Z ′ be a Cartesian coordinate system which has its coordinate
axes parallel to the three 2-fold axes of the orthorhombic texture and the OZ ′ axis agree with OZ . Let W ′

lmn be the texture
coefficients of the sample under the coordinate system OX ′Y ′Z ′ and the choice that the reference crystal lattice has its three
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4-fold axes parallel to the coordinate axes OX ′, OY ′, and OZ ′. The fourth-order tensor C′(wiso)[w − wiso] and sixth-order
tensor D′(wiso)[w − wiso] are then given [14,20] respectively by(

C′(wiso)[w − wiso]
)
[E] = αΦ(W ′

400,W
′

420,W
′

440)[E], (2.12)(
D′(wiso)[w − wiso]

)
[T
◦
, E] =

4∑
j=1

b̃jΨ (i)(W ′

400,W
′

420,W
′

440)[T
◦
, E]

+ aΘ(W ′

600,W
′

620,W
′

640,W
′

660)[T
◦
, E]; (2.13)

here α, a and b̃j (j = 1, . . . , 4) are material constants; Φ is a fourth-order tensor and Ψ (j) (j = 1, . . . , 4) are sixth-order
tensors defined in terms of the texture coefficients W ′

400, W
′

420, W
′

440, and Θ a sixth-order tensor defined in terms of W ′

600,
W ′

620,W
′

640 andW ′

660. The components of these tensors in any OXYZ coordinate systemwhich has the OZ-axis agree with the
OZ ′ axis are given explicitly in Appendix A.

The constitutive equation in question, as defined by (2.4) and (2.9)–(2.13), has 12 material parameters, namely λ, µ, α, βi
(i = 1, . . . , 4), b̃j (j = 1, . . . , 4), and a. The values of these material parameters and of the relevant texture coefficientsW ′

lmn
that pertain to the aluminum sample in question are given in Appendix A.

3. Dispersion of Rayleigh waves in weakly anisotropic media with vertically-inhomogeneous initial stress

In what follows we adopt the following basic assumptions [10] on the initial stress T
◦

= T
◦
(x3), the incremental elasticity

tensor L = L(x3), the perturbative part A of L, and the mass density ρ = ρ(x3):

(a) T
◦
(x3),L(x3) and ρ(x3) are smooth functions3 of the coordinate x3 (x3 ≤ 0).

(b) The initial stress T
◦
is residual, i.e., it satisfies the equation of equilibrium div T

◦
= 0 for x3 < 0 and the components

T
◦
i3(x3) (i = 1, 2, 3) vanish at the surface x3 = 0.

(c) At the free surface x3 = 0, the perturbative part A of L and the initial stress T
◦
are sufficiently small as compared

with the isotropic part CIso of L (i.e., ∥T
◦
(0)∥ ≪ ∥CIso

∥, ∥A(0)∥ ≪ ∥CIso
∥, where ∥ · ∥ denotes the Euclidean norm)

that for all expressions and formulas which depend on A(0) and T
◦
(0) it suffices to keep only those terms linear in the

components of these tensors.

Note that by (2.9) A := L − CIso; hence by assumption (a) the perturbative part A of L also depends smoothly on x3.
The objective of this paper is to study the inverse problem that pertains to using boundary measurement of Rayleigh-

wave dispersion to infer the near-surface depth profile of residual stress induced by surface-conditioning treatments such
as low-plasticity burnishing if all other material parameters of the sample are known. Our solution of this inverse problem
is based on the algorithm developed in [9,10] which, under the aforementioned conditions on T

◦
, L, A and ρ, can iteratively

generate each term in ahigh-frequency asymptotic formula of the dispersion relation of Rayleighwaves once the propagation
direction and all the relevant material parameters including the residual stress depth-profile are specified. In this sectionwe
briefly outline the steps (cf. [10] for details) to solve the direct problem and present a theorem which will be instrumental
to solving the inverse problem.

Consider Rayleigh waves that propagate with phase velocity v, wave number k, and propagation direction η along the
traction-free surface of the sample, which is modeled as a vertically-inhomogeneous half-space. Let Z(v) = Z(v, η, k) be
the 3 × 3 surface impedance matrix that expresses a linear relationship between the displacements at the free surface and
the surface tractions needed to sustain them. In [9,10] an algorithm is given by which each term Zi (i = 1, 2, 3, . . .) of the
asymptotic expansion

Z(v) = k Z0(v) + Z1(v) + k−1 Z2(v) + k−2 Z3(v) + · · · (3.1)

can be computed iteratively once Z0 is determined. Specifically Z1 is obtained by solving Lyapunov-type equations (20) and
(21) in [10], and Zm (m = 2, 3, . . .) are obtained by solving (23) to (25) in [10]. Note that kZ0 is the surface impedancematrix
of the comparative homogeneous elastic half-space which has its incremental elasticity tensor, mass density, and initial
stress equal to L(0), ρ(0), and T

◦
(0), i.e., their value at the surface x3 = 0, respectively. Let ε := 1/k. From (3.1) the truncated

sum of the asymptotic expansion for the Rayleigh-wave velocity vR up to the order εn, namely

vR = v0 + v1 ε + v2 ε2
+ · · · + vn εn, (ε = 1/k) (3.2)

is obtained by applying the implicit function theorem to the approximate secular equation

R(v, ε) = det
[
Z0 + Z1 ε + Z2 ε2

+ · · · + Zn εn ]
= 0. (3.3)

Note that v0 satisfies Z0(v) = 0.

3 Here and hereafter we use the term ‘‘smooth function’’ to denote an infinitely differentiable function all of whose derivatives are bounded and
continuous.
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Under assumption (c), we are concerned only with the terms in Z0(v) up to those linear in T
◦
(0) and A(0), which leads us

to write

Z0(v) ≈ ZIso
0 (v) + ZPtb

0 (v); (3.4)

here we use the notation ≈ to indicate that we are retaining terms up to those linear in A(0) and T
◦
(0) and that we are

neglecting the higher order terms. ZIso
0 (v) is of zeroth order in T

◦
(0) andA(0), whereas ZPtb

0 (v) is of first order in T
◦
(0) andA(0).

Note that k ZIso
0 (v) is the surface impedancematrix pertaining to a homogeneous isotropic elastic half-spacewith constitutive

equation S = CIso
[E] and with density ρ = ρ(0).

The following mathematical theorem, which describes how T
◦
(x3) affects vm (m = 1, 2, . . . , n) in (3.2), will prove to be

instrumental when we study the inverse problem.

Theorem 3.1. For m = 1, 2, . . . , n, vm in the mth-order term of (3.2) depends on T
◦
(0) and on the x3-derivatives of T

◦
(x3) at

x3 = 0 up to those of order m; in particular, vm is of first order in the mth-order x3-derivative of T
◦
(x3) at x3 = 0.

A proof of this theorem is given in Appendix B.
In the inverse problem we will adopt a numerical setting where each component of T

◦
is represented as a polynomial in

x3 of degree n (n = 1, 2, 3, . . .)4

T
◦
11 = T

◦
11(0) +

n∑
m=1

am x3m, T
◦
22 = T

◦
22(0) +

n∑
m=1

bm x3m, T
◦
12 = T

◦
12(0) +

n∑
m=1

cm x3m,

T
◦
13 =

n∑
m=1

dm x3m, T
◦
23 =

n∑
m=1

em x3m, T
◦
33 =

n∑
m=1

fm x3m. (3.5)

Here the coefficients am, bm, cm, dm, em, fm (m = 1, 2, . . . , n) are to be determined in the implementation for the inverse
problem.

From Theorem 3.1 we immediately obtain

Corollary 3.2. For m = 1, 2, . . . , n, vm in the mth-order term of the expansion (3.2) has the following dependency on the
parameters am, bm, cm, dm, em, fm (1 ≤ m ≤ n):

(1) v1 = v1(a1, b1, c1, d1, e1, f1) is a first-order function of its arguments.
(2) For m = 2, 3, . . . , n, the function

vm = vm(a1, b1, c1, d1, e1, f1, a2, b2, c2, d2, e2, f2, . . . , am, bm, cm, dm, em, fm)

is of first-order in am, bm, cm, dm, em, fm.

Remark 3.3. Tanuma et al. [10] provide an algorithm for the computation of the functions vm (m = 1, 2, . . . , n) if all
relevant material parameters, texture coefficients, and the initial stress T

◦
are available as functions of x3. Conversely,

Corollary 3.2 allows us to infer the parameters am, bm, cm, dm, em, fm (m = 1, 2, . . . , n) from experimental data on Rayleigh-
wave dispersion in six propagation directions as follows. First the parameters a1, b1, . . . , f1 are determined from the six
values of v1 for the different propagation directions by solving the six equations on v1, which are linear in the unknowns
a1, b1, . . . , f1. Second these values of a1, b1, . . . , f1 are substituted into the function v2 = v2(a1, b1, . . . , f1, a2, b2, . . . , f2),
which is linear in the unknowns a2, b2, . . . , f2. These unknowns are evaluated by solving the six equations on v2 for the six
different propagation directions. This iterative process is then repeated for m = 3, . . . , n to get am, bm, . . . , fm from the six
equations on vm, which are linear in am, bm, . . . , fm. A special case where the initial stress T

◦
is residual and n = 3 is discussed

in detail in Section 4.2. □

4. An inverse problem on monitoring of stress retention

The inverse problem in question can be described as follows. Suppose we have ascertained all relevant material
characteristics of the treated sample, including the profile of the residual stress imparted by surface-conditioning, before
the sample is put into service (say, the sample at state 0). After a service period of the sample, suppose only the residual
stress in the sample (say, at state 1) may have changed. Can we infer the depth profile of the current residual stress from
measurement data on the dispersion of Rayleigh waves that propagate in various directions along the free surface of the
sample?

4 From the assumptions (a) and (b) it follows that T
◦
13(x3) = T

◦
23(x3) = T

◦
33(x3) = 0. Therefore we will use only the first three equations of (3.5) in the

present paper. On the other hand, when the initial stress T
◦
is not residual (see for example [21]), we will have to keep the last three equations of (3.5).
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Fig. 1. Spatial coordinate system, material coordinate system, and principal-stress directions.
Source: Reprinted from [10], with permission from Elsevier.

Recall thatweworkwith twoCartesian coordinate systems; see Section2.We choose and fix a spatial Cartesian coordinate
systemOXYZ such that thematerialmediumoccupies the half-space x3 ≤ 0 and x3 = 0 is the surface treated by lowplasticity
burnishing (LPB). The fixed 1- and 2-axis are chosen arbitrarily. The OX ′Y ′Z ′ system is the material coordinate systemwhich
has its coordinate axes parallel to the three 2-fold axes of the orthorhombic texture of the sample and the OZ ′ axis agrees
with the OZ axis. We shall consider Rayleigh waves that propagate in the 2-direction. Let θ be the angle of rotation about the
3-axis that will bring the 2-axis to the 2′-axis. Different propagation directions in the sample are obtained by rotating the
material half-space about the 3-axis, i.e., by varying θ . Henceforth we call θ the propagation direction of the Rayleigh wave
(relative to the 2′-direction of the material half-space).

Since we assume that the depth-dependent initial stress T
◦
(x3) be residual, i.e., it satisfies the equation div T

◦
= 0 for

x3 < 0 and the boundary condition of zero traction at x3 = 0, it is of the form

T
◦
(x3) =

⎛⎜⎜⎝
T
◦
11(x3) T

◦
12(x3) 0

T
◦
12(x3) T

◦
22(x3) 0

0 0 0

⎞⎟⎟⎠ (4.1)

under the OXYZ coordinate system. Let e1(x3) and e2(x3) be the principal directions of the stress that are perpendicular to the
3-axis, and σ1(x3) and σ2(x3) be the corresponding principal stresses. Let ζ (x3) be the angle between e2(x3) and the 2′-axis.
Then ϕ(x3) = θ + ζ (x3) is the angle of rotation about the 3-axis that will bring the direction of the 2-axis to e2(x3); see Fig. 1.
It follows that T

◦
ij(x3) in (4.1) can be written as

T
◦
11 = T

◦
m − T

◦
d cos 2ϕ, T

◦
22 = T

◦
m + T

◦
d cos 2ϕ, T

◦
12 = −T

◦
d sin 2ϕ, (4.2)

where

T
◦
m :=

σ1 + σ2

2
, T

◦
d :=

σ2 − σ1

2
. (4.3)

Let ρ0 be the density of the aluminum alloy in question when it is stress free. The presence of vertically-inhomogeneous
residual stress T

◦
(x3) will change the density of the material point from ρ0 to ρ(x3), which is related to ρ0 and T

◦
(x3) by the

formula

ρ(x3) = ρ0(1 − trE), where E = (CIso
+ αΦ)−1

[T
◦
]. (4.4)

In this paper we take ρ0 = 2.81 × 103 kg/m3, which is the (nominal) density of AA 7075 alloy as computed from those of
its alloying elements and their concentrations ([22], pp. 2–14).

Now we are ready to make an assertion (**) that serves as an affirmative answer to the question raised at the beginning
of this section on the inverse problem:
(**) Suppose all the relevant material parameters and texture coefficients, except for the residual stress T

◦
(x3), are

known functions of x3. Let T
◦
11, T

◦
22, and T

◦
12 be modeled as polynomials of degree n in x3 as in (3.5). If the parameters
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v0(θ ), v1(θ ), . . . , vn(θ ) in the dispersion relation (cf. (3.2))

vR(θ ) = v0(θ ) + v1(θ ) ε + v2(θ ) ε2
+ · · · + vn(θ ) εn, (ε = 1/k) (4.5)

can be evaluated unambiguously from experimental data on Rayleigh-wave dispersion for three different propagation
directions θ , then T

◦
11(0), T

◦
22(0), T

◦
12(0), and all the parameters (am, bm, cm) form = 1, 2, . . . , n in (3.5) can be determined.

For definiteness, for the rest of this sectionwewill showhow the polynomialmodel functions T
◦
11(x3), T

◦
22(x3), and T

◦
12(x3)

can be determined for the case n = 3. The dispersion relations in question then reduce to

vR(θ ) = v0(θ ) + v1(θ )ε + v2(θ )ε2
+ v3(θ )ε3, (4.6)

where 0 ≤ θ ≤ π , ε = k−1, and k is the wave number.

4.1. Determination of T
◦
11(0), T

◦
22(0), and T

◦
12(0)

In (4.6), v0(θ ) = vIso
0 + vPtb

0 (θ ) is the zeroth-order term. As shown by Corollary 8.2 of [23], it is given by the formula

v0(θ ) = vIso
0 −

1
2ρ(0)vIso

0

×

(
A0 + A2 cos 2θ + A4 cos 4θ + (B0 + B2 cos 2θ + B4 cos 4θ )T

◦
m(0)

+ (C0 + C2 cos 2θ + C4 cos 4θ + C6 cos 6θ )T
◦
d(0) cos 2ϕ

+ (D2 sin 2θ + D4 sin 4θ + D6 sin 6θ )T
◦
d(0) sin 2ϕ

)
. (4.7)

Here ρ(0) is the density of the material at the free surface x3 = 0. Formulas that express the parameters Ai (i = 0, 2, 4),
Bi (i = 0, 2, 4), Ci (i = 0, 2, 4, 6), Di (i = 2, 4, 6) and vIso

0 (the phase velocity of Rayleigh waves in the isotropic base material)
in terms of the material parameters and texture coefficients are given in [23]. Let

A := T
◦
m(0), B := T

◦
d(0) cos(2ζ (0)), C := T

◦
d(0) sin(2ζ (0)). (4.8)

From (4.2) and (4.8), we get

T
◦
11(0) = T

◦
m(0) − T

◦
d(0) cos 2(θ + ζ ) = A − B cos 2θ + C sin 2θ,

T
◦
22(0) = T

◦
m(0) + T

◦
d(0) cos 2(θ + ζ ) = A + B cos 2θ − C sin 2θ, (4.9)

T
◦
12(0) = −T

◦
d(0) sin 2(θ + ζ ) = −B sin 2θ − C cos 2θ.

Then for a given θ we can express ρ(0) and thence also vIso
0 , through (4.4), in terms of A, B, C and the known material

parameters, texture coefficients, and ρ0. Thus for a given θ the right-hand side of (4.7) is a nonlinear function of A, B, and C ,
which are the unknowns.

Let v
(0)
0 (θ ) and v

(1)
0 (θ ) be the zeroth-order term for the phase velocities of Rayleigh waves with propagation direction θ

along the free surface of the sample in state 0 and 1, respectively; here the superscript (j) for j = 0, 1 denotes the state 0 or
1. Let

∆v0(θ ) = v
(1)
0 (θ ) − v

(0)
0 (θ ). (4.10)

On one hand, ∆v0(θ ) in (4.10) can be measured by experiments for various θ at such high frequencies that v
(0)
R and v

(1)
R

appear to become constant. On the other hand, by using the formula (4.7) to compute ∆v0(θ ) we can see that it can be
expressed in terms of A(1), B(1), C (1) which are the unknown parameters (4.8) for state 1. Thus, we can useMaple to apply the
Levenberg–Marquardtmethod to estimate the parameters A(1), B(1), C (1) with 1 as their initial guess to fit these experimental
data. In other words, we can recover ζ , σ1, σ2 at the surface of the material for state 1. From (4.2), we can also evaluate the
values of T

◦
11(0), T

◦
22(0), T

◦
12(0) for state 1.

4.2. Determination of the parameters am, bm, and cm (m = 1, 2, 3) in (3.5)

To find the depth profile of the new prestress, we assume that the components of the new prestress can be fitted by some
cubic polynomials (cf. (3.5))

T
◦
11(x3) = T

◦
11(0) + a1x3 + a2x23 + a3x33,

T
◦
22(x3) = T

◦
22(0) + b1x3 + b2x23 + b3x33, (4.11)

T
◦
12(x3) = T

◦
12(0) + c1x3 + c2x23 + c3x33;
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Table 1
Change of ζ with respect to depth.

Depth (mm) 0 0.0667 0.2 0.3167 0.45 0.5667 0.7 0.8333 1.05 1.25

ζ (degree) 30◦ 35◦ 40◦ 34◦ 25◦ 23◦ 21◦ 18◦ 15◦ 12◦

here −x3 denotes the depth; T
◦
11(0), T

◦
22(0), and T

◦
12(0) have already been determined by the method discussed in the

preceding subsection; am, bm, cm (m = 1, 2, 3) are the parameters to be determined.
To start with, let us choose a specific propagation direction θ . By Corollary 3.2, by applying the algorithm for solving the

direct problem, we can get a parametric dispersion relation of the form

vR(θ ) = v0(θ ) + v1(θ; a1, b1, c1) ε + v2(θ; a1, b1, c1, a2, b2, c2) ε2

+ v3(θ; a1, b1, c1, a2, b2, c2, a3, b3, c3) ε3, (4.12)

where vm is linear in (am, bm, cm) for m = 1, 2, 3. Indeed the procedure and formulas for the computations of the functions
v1, v2, and v3 are explicitly given in [10]. Note that while the values of v1(θ ), v2(θ ), and v3(θ ) in (4.6) can be determined from
experimental data on vR(θ ) over suitable frequency windows, it is not enough to determine all nine parameters am, bm, cm
form = 1, 2, 3 from the system

v1(θ ) = v1(θ; a1, b1, c1), v2(θ ) = v2(θ; a1, b1, c1, a2, b2, c2),

v3(θ ) = v3(θ; a1, b1, c1, a2, b2, c2, a3, b3, c3) (4.13)

if we use just one θ . Hence we consider three different θ ’s to get a complete system. To determine the nine parameters
am, bm, cm, first we solve for a1, b1, c1 from the system for v1, which is linear with respect to a1, b1, c1. Then substituting the
values of a1, b1, c1 into the system for v2 to get a linear system with respect to a2, b2, c2, we can solve for a2, b2, c2 quickly.
After that, continue to substitute the values of a1, b1, c1, a2, b2, c2 into the system for v3. Doing so leads to a linear system
associated with a3, b3, c3, from which the parameters a3, b3, c3 can be easily determined.

To get better estimates of the parameters am, bm, cm, we can consider several different groups of θ with each group
containing 3 different θ ’s. After determining the parameters am, bm, cm for each group, we take the average of the parameters
from these groups as our estimated values of the parameters am, bm, cm for m = 1, 2, 3.

5. Recovery of near-surface depth profile of residual stress

5.1. The ‘‘unknown’’ T
◦
(x3)

The residual stress T (0)◦
induced by LPB treatment on theAA7075-T651 sample (state 0)wasmeasured byX-ray diffraction

(and supplemented by information gathered fromhole-drilling) up to a depth of 1.25mm from the treated surface. The depth
profiles of the principal stresses are depicted in Fig. 2, where the upper and lower curves pertain to the principal stresses
σ1(x3) and σ2(x3), respectively. Since T (0)◦

(x3) is also of the form (4.1) under the OX ′Y ′Z ′ material coordinate system, the
principal directions e1(x3) and e2(x3) of the stress are defined with respect to the material coordinate system as soon as the
angle ζ (x3) between e2(x3) and the 2′-direction is specified. In the stress measurements it was found that ζ (x3) ≈ 10◦ for
0 ≥ x3 ≥ −0.5 mm. As shown in Fig. 2, σ1(x3) ≈ σ2(x3) for x3 ≤ −0.5 mm. Hence we may take ζ (x3) ≈ 10◦ for x3 ≤ −0.5
mm, as ζ (x3) is, to within experimental error, arbitrary there. In our computations below, however, only the information on
T (0)◦

(0) will be used to calculate v
(0)
0 (θ ).

Suppose the residual stress has changed to some unknown T
◦
(x3) (state 1) after the sample is put into service for a period

of time, but crystallographic texture and other material parameters of the sample remain the same as before. As an exercise
to see if we could determine the unknown T

◦
(x3) by boundary measurement of Rayleigh-wave dispersion, let us consider

a specific instance where the original residual stress is relaxed so that the depth profile of the principal stresses σ1 and σ2
become those given in Fig. 3. Moreover the angle ζ varies with depth as shown in Table 1.

5.2. Experimental considerations

In this paper we shall test our algorithm for monitoring depth-profile of near-surface residual stress against simulated
dispersion data. To beginwe should survey the experimental literature and decide, for our simulated data, what assumptions
we will make as regards measurement error of Rayleigh-wave velocity and the frequency window within which dispersion
data is available. Because of the smallness of the acoustoelastic effect, measurement accuracy of Rayleigh-wave velocity is
of prime importance to our present study. In this regard, two methods of Rayleigh-wave measurements, namely that which
involves scanning acoustic microscopy (SAM) with immersion transducers [24] and that which uses laser ultrasonics [25],
merit special attention.

Rayleigh-wave velocity measurements of stress using SAM systems are well documented [26–28]. An absolute measure-
ment accuracy of surface-wave velocity of ±0.02% has been obtained using a well-controlled and calibrated immersion
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Fig. 2. Depth profiles of principal stresses σ1 (upper curve) and σ2 (lower curve) in sample at state 0.
Source: Reprinted from [10], with permission from Elsevier.

Fig. 3. Depth profiles of relaxed principal stresses σ1 (upper curve) and σ2 (lower curve) in sample at state 1.

SAM system [29]. To reach this level of accuracy, tedious measures are needed to calibrate for and minimize effects
caused by surface abnormalities, temperature fluctuations, and electrical instabilities. The present study is meant as a
first step with the long-term goal to develop a robust nondestructive evaluation method for measuring depth-dependent
residual stress in surface-treated metals, LPB treatments in particular. With this application in mind, it is desirable to
perform measurements on as-received samples. Whereas the high-frequency SAM systems are highly-sensitive to surface
irregularity, laser ultrasonic methods for Rayleigh-wave measurements have demonstrated a balance between surface
condition sensitivity and measurement accuracy [4,30,31]. Additionally, the flat spectral response common to optical
detection systems is appropriate to the stress-dependent dispersion present in the model predictions. With this in mind,
the simulations and analysis in this article focus around the capabilities of laser-ultrasonic systems.

Using an optical detection system, Ruiz and Nagy [31] reported a relative error of ±0.1% in the measured Rayleigh-wave
velocity. This level of error is believed to be fairly conservative because it was established from measurements performed
on rough, shot-peened surfaces with considerable cold-work [31]. Recent Rayleigh-wave velocity measurements conducted
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on the smooth surface of a steel sample under tension were resolved to within ±0.005% relative to the initial stress-free
measurement (cf. Fig. 4 of [32]). However, achieving measurement error near ±0.1% still requires careful experimental
considerations.

In general, significant sources of dispersion influencing Rayleigh waves include diffraction, induced surface roughness by
the surface treatment, generated residual stresses, and secondary microstructural changes associated with the initial cold
work and subsequent thermomechanical loading history [31]. For the present consideration, as a first step, we investigate
the possibility of monitoring the depth-profile of stress by measurement of Rayleigh-wave dispersion only for situations
where crystallographic texture and other material parameters remain unchanged. Moreover, we assume that the mirror-
like surface finish produced by the LPB treatment renders the influence of surface roughness on the overall dispersion
negligible. However, the smooth surfaces resulting from LPB do not completely eliminate diffraction effects [30]. Diffraction
is a result of the Rayleigh-wave being generated by a finite-sized source, which causes the wave to exhibit a spatially-
dependent phase that leads to self-interaction. Diffraction effects are lessened for detection far from the source or when
the Rayleigh wavelength is much smaller than the size of the source, i.e., at high-frequencies. Ruiz and Nagy [30] reported
that diffraction led to a Rayleigh-wave dispersion on the order of 0.1% for nominally smooth surfaces. They provided amodel-
based diffraction correction for Rayleigh-wave dispersion measurements [30]. The diffraction correction demonstrated
strong agreement with experimental measurements above approximately 3 MHz.

In addition to the experimental considerations described above, there are other factors that we should take into account
whenwe decide on the ‘‘measurement error’’ in Rayleigh-wave velocity and the frequencywindow for the dispersion curves
that we will adopt for the simulated data.

5.3. Measurement error and frequency window for simulated data

Given a sample with residual stress, the largest measurement error in Rayleigh-wave velocity that can be tolerated
without compromising a recovery procedure is determined by the size of the acoustoelastic effect in the sample, the
magnitude of the residual stress present, and the accuracy desired for the predicted stress. Thus it should be decided on
a case-by-case basis. For the AA 7075-T651 sample in question, a previous study [10] on the direct problem indicates that
dispersion curves of Rayleigh waves are monotonic in the frequency window of [4, 70] MHz and extend intervals of range
= 4.2, 6.8, 13.9, 3.3 m/s for propagation directions θ = 0◦, 45◦, 90◦, 135◦, respectively. Since data for three different θ ’s
will be needed to get one estimate of the residual stress profile (see Section 4.2), it seems that the measurement error
should be no worse than ±3 m/s for our algorithm to work. As vR ≈ 3000 m/s for the aluminum sample, this translates to
an error of ±0.1%, which can be achieved by laser-ultrasonic measurements in the laboratory (see Section 5.2), and it is the
measurement error we will assume when we simulate the experimental data.

As for the frequencywindow onwhichwe assumewe have dispersion data, besides the constraint imposed by diffraction
effects, there is the fact that the algorithm we use to solve the inverse problem is based on the high-frequency asymptotic
formula (3.2) for Rayleigh-wave dispersion, the details of which are given in [10]. The accuracy of the formula depends on the
order of approximation and the frequency window we choose. With reference to the comparison of the first-, second-, and
third-order terms in the high-frequency asymptotic formula for the aluminum sample in question (see Table 2 of [10]), in this
paper we use the third-order approximation and a frequency window from 4 to 70MHz in Section 5.4 and the second-order
approximation and a frequency window from 7 to 70 MHz in Section 6.

5.4. Simulation of velocity and dispersion data

We assume that measurements of Rayleigh-wave velocities be made by rotating the sample about the 3-axis, in steps of
15◦, from θ = 0◦ to 180◦. However, since we have no experimental results in hand, we simulate the velocity and dispersion
data of the sample at state 1 as follows.

First, by using the ‘‘real’’ relaxed stress T
◦
(x3) of the sample at state 1, we follow the method detailed in [10] to derive

theoretical dispersion curves (to third order) for the selected propagation directions θ . For instance, for θ = 90◦ the
theoretical dispersion relation is given by

vR = 2877.1 + 1.776 × 105ε − 1.542 × 109ε2
+ 7.099 × 1012ε3, (5.1)

where vR is in m/s and ε = 1/k is in meters. As explained in Section 5.2, in this paper we assume that the accuracy of
measurement of vR is ±0.1%. Hence for the truncated dispersion relation (4.6), the approximation in replacing vR by v0 in
the formula ε = vR/(2π f ) will be acceptable if vR − v0 and the correction terms v1/k, v2/k2, v3/k3 are all within 1% of v0
(see Remark 6.2 of [10] for further discussions). Substitution of ε ≈ v0/(2π f ) in the approximate formula (5.1) for the phase
velocity vR of the Rayleigh waves leads to the dispersion relation between vR and the frequency f :

vR = 2877.1 +
2.554 × 102

π f
−

3.191 × 103

π2f 2
+

2.113 × 104

π3f 3
, (5.2)

where f is the frequency in MHz; see Fig. 4. For each theoretical dispersion curve, we take frequency steps of 0.5 MHz
each in the frequency window from 4 to 70 MHz and compute the theoretical values of vR at each step. Furthermore, for
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Fig. 4. Theoretical dispersion curve of sample at state 1 for θ = 90◦ .

Fig. 5. Simulated ‘‘experimental’’ data and fitting curve for θ = 90◦ in the frequency window from 4 to 70 MHz by steps of 0.5 MHz.

each frequency f in question, we assume5 that the experimental data of vR scatter as a normal distribution with standard
deviation σvR = 3 m/s about the theoretical value, and we choose a value randomly for 5 times and then take the average
as the replacement of the experimental data for vR. The simulated ‘‘experimental’’ dispersion curve is obtained by using the
least squaremethod to fit these data points with a smooth function in the form of a cubic polynomial in 1/f . The fitting curve
and the simulated ‘‘experimental’’ data for θ = 90◦ are shown in Fig. 5. The horizontal asymptotes of the fitting curves are
used as the simulated ‘‘experimental’’ data for v

(1)
0 (θ ) for θ from 0◦ to 180◦ in steps of 15◦.

As we assume that we know everything about the sample at state 0, we simply use the estimates by the formula (4.7)
with σ1(0) = −203.5 MPa, σ2(0) = −412.5 MPa, and ζ = 10◦ at the surface x3 = 0 as our experimental data v

(0)
0 for each θ .

5 Based on the earlier assumption that the measurement-accuracy of vR reach ±0.1% and on the fact that for aluminum vR ≈ 3000 m/s.
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Table 2
Fitting values of parameters A(1), B(1), C (1) in units of MPa as determined from
simulated data on ∆v0 .

A(1) B(1) C (1)

−2.32763 102
−4.16791 101

−7.88577 101

Fig. 6. Simulated data (black dots) and fitting curve for ∆v0 .

5.5. Predictions and comparisons

Following the discussion in Section 4.1, we apply the Levenberg–Marquardt method to estimate the parameters
A(1), B(1), C (1) with 1 as their initial guess to fit the simulated data on ∆v0(θ ) in (4.10) for the selected θ ’s. The values of
the parameters found are given in Table 2, and the fitting curve pertaining to these values of parameters A(1), B(1), C (1) are
shown in Fig. 6.

Substituting the fitted values of Table 2 into (4.8), we obtain T
◦
m(0) = −232.8MPa, T

◦
d(0) = −89.2MPa and ζ = 31.1◦ at

the surface x3 = 0 for the sample at state 1. Consequently, we have σ1(0) = −143.6MPa and σ2(0) = −322.0MPa at the free
surface. Then the surface prestress T

◦
(0) can be derived from (4.2). Thuswehave T

◦
11(0) = −274.4MPa, T

◦
22(0) = −191.1MPa

and T
◦
12(0) = −78.9 MPa. Substituting the surface stress T

◦
(0) into (4.11) and applying the algorithm given in [10], we get

v1, v2, v3 in terms of the parameters am, bm, cm (m = 1, 2, 3). Following the discussion in Section 4.2, we proceed to compute
for the cases θ = 0◦, 45◦ and 90◦. The process is the same for different θ , except that we should use the formulas given in
Appendix A for the components (with respect to the spatial coordinate system) of Φ , Ψ (i)(i = 1, . . . , 4) and Θ in (2.4) for
the specific θ in question.

To get better estimates of am, bm, cm (m = 1, 2, 3), we consider 3 groups of θ : (1) θ = 0◦, 45◦, 90◦; (2) θ =

60◦, 120◦, 180◦; (3) θ = 30◦, 105◦, 150◦. Group 1 has been discussed above. The other two groups are processed in the same
way. Table 3 shows the results of am, bm, cm (m = 1, 2, 3) for these three groups and the corresponding average values.

We use the average values of am, bm, cm as our simulated results. The components of the corresponding T
◦
are shown

below:

T
◦
11 = −274.4 + 9.943 × 102x3 + 2.050 × 103x23 + 5.589 × 102x33,

T
◦
22 = −191.1 + 1.417 × 103x3 + 2.700 × 103x23 + 9.554 × 102x33, (5.3)

T
◦
12 = −78.9 − 2.207 × 102x3 − 2.132 × 102x23 − 7.205 × 101x33,

where the stresses are in MPa and −x3 ≥ 0 denotes the depth in units of mm. Comparisons between the components of our
simulated T

◦
(x3) (solid curves) and those of the ‘‘real’’ residual stress (black dots) in the sample at state 1 are shown in Fig. 7,

where the dot curves are the fitting curves for the ‘‘real’’ stresses. A comparison of the corresponding principal stresses is
illustrated in Fig. 8.
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Table 3
Values and average of a1, b1, c1 (MPa/mm), a2, b2, c2 (MPa/mm2), a3, b3, c3 (MPa/mm3) from three groups of θ : (1) θ = 0◦, 45◦, 90◦; (2) θ =

60◦, 120◦, 180◦; (3) θ = 30◦, 105◦, 150◦ .

a1 a2 a3
Group (1) 9.932275194 102 2.050029714 103 5.699045777 102

Group (2) 9.958481153 102 2.052999597 103 5.650730529 102

Group (3) 9.939524939 102 2.046795586 103 5.417913915 102

Average 9.943427095 102 2.049941632 103 5.589230074 102

b1 b2 b3
Group (1) 1.414984597 103 2.69694662 103 9.564504997 102

Group (2) 1.418226166 103 2.70135238 103 9.496635036 102

Group (3) 1.416637377 103 2.70149117 103 9.601827370 102

Average 1.416616047 103 2.69993006 103 9.554322468 102

c1 c2 c3
Group (1) −2.213326631 102

−2.136493828 102
−6.64566032 101

Group (2) −2.203477994 102
−2.127819162 102

−7.34684457 101

Group (3) −2.203303837 102
−2.131984256 102

−7.62330586 101

Average −2.206702821 102
−2.132099082 102

−7.20527025 101

(a) T
◦
11 . (b) T

◦
22 . (c) T

◦
12 .

Fig. 7. Comparison between components T
◦
ij (ij ∈ {11, 22, 12}) of simulated prestress (solid curves) and of ‘‘real’’ prestress (dot curves) in sample at

state 1.

6. The second-order approximation

In some applications, information on the stress from the surface to a depth of about 0.5mmwould be sufficient.Moreover,
in Section 5 the lower bound of the frequencywindow is 4MHz, which could be too low in practice because diffraction errors
are much larger for frequencies lower than 4 or 5 MHz. In this section we will truncate the asymptotic expansion (3.2) for
the Rayleigh-wave velocity vR at the order ε2 and use a frequency window of lower boundary 7 MHz. The same aluminum
sample as in Section 5 is considered. The depth profiles of residual stresses T (0)◦

(x3) and T
◦
(x3) for state 0 and 1, respectively,

are the same as Section 5. However, here we focus only on the parts corresponding to the range of −x3 in [0, 0.6] mm. The
simulated ‘‘experimental’’ data on vR at various frequencies for various propagation directions θ are the same as in Section 5,
but we will only use the data within the frequency window from 7 to 70 MHz. Unlike the third-order approximation in
Section 5, here we obtain the dispersion curves by applying the least square method to fit the simulated data points with
the quadratic form

vR(θ ) = v0(θ ) + v1(θ )ε + v2(θ )ε2, where ε = 1/k. (6.1)

As illustration, the fitting curve and the simulated ‘‘experimental’’ data for θ = 90◦ are shown in Fig. 9. The horizontal
asymptotes of the fitting curves are treated as the simulated data for v

(1)
0 for θ from 0◦ to 180◦ in steps of 15◦.

Just as what we did in Section 5, the fitted values of the parameters A(1), B(1), C (1) in (4.10) are determined in the same
way. Here, in the second-order approximation, we have A(1)

= −231.1MPa, B(1)
= −41.1MPa, C (1)

= −73.9MPa. Therefore
from (4.8), we obtain T

◦
m(0) = −231.1 MPa, T

◦
d(0) = −84.6 MPa and ζ = 30.5◦ at the surface x3 = 0 of the sample at state
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(a) Principal stress σ1 . (b) Principal stress σ2 .

Fig. 8. Comparison between simulated principal prestresses (solid curves) and ‘‘real’’ principal prestresses (dot curves) in sample at state 1.

Fig. 9. Simulated data and second-order fitting curve for θ = 90◦ in the frequency window from 7 to 70 MHz by steps of 0.5 MHz.

1. It follows that σ1(0) = −146.6 MPa and σ2(0) = −315.7 MPa at the free surface. The surface residual stress T
◦
(0) has the

components T
◦
11(0) = −272.2 MPa, T

◦
22(0) = −190.1 MPa and T

◦
12(0) = −73.9 MPa.

Here we assume that the components of the relaxed prestress can be fitted by some quadratic forms

T
◦
11 = T

◦
11(0) + â1x3 + â2x23,

T
◦
22 = T

◦
22(0) + b̂1x3 + b̂2x23, (6.2)

T
◦
12 = T

◦
12(0) + ĉ1x3 + ĉ2x23.

For the second-order approximation, we just need to follow the algorithm given in [10] to determine v1, v2 in terms of
âm, b̂m, ĉm (m = 1, 2). From Corollary 3.2, v1 is of first-order in â1, b̂1, ĉ1 and v2 is of first-order in â2, b̂2, ĉ2. Just as
what we did in Section 5, we use waves of three different propagation directions, say θ = 0◦, 45◦, 90◦, and compare the
quadratic-fitting dispersion curves in the form of (6.1) with the parametric dispersion curves vR = v0 + v1(â1, b̂1, ĉ1) ε +

v2(â1, b̂1, ĉ1, â2, b̂2, c2) ε2 to determine â1, b̂1, ĉ1 first, and then â2, b̂2, ĉ2. For instance, the components of the corresponding
T
◦
(x3) as obtained from data that pertain to the propagation directions θ = 0◦, 45◦, 90◦ are:

T
◦
11 = −272.2 + 9.048 × 102x3 + 1.654 × 103x23,
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(a) T
◦
11 . (b) T

◦
22 . (c) T

◦
12 .

Fig. 10. Comparison between simulated T
◦
ij where ij ∈ {11, 22, 12} (solid curves) and original prestress components (dot curves) in sample at state 1;

second-order approximation, frequency window from 7 to 70 MHz.

(a) Principal stress σ1 . (b) Principal stress σ2 .

Fig. 11. Comparison between simulated principal prestresses (solid curves) and ‘‘real’’ principal prestresses (dot curves) in sample at state 1; second-order
approximation, frequency window from 7 to 70 MHz.

T
◦
22 = −190.1 + 1.299 × 103x3 + 1.908 × 103x23, (6.3)

T
◦
12 = −73.9 − 2.159 × 102x3 − 1.591 × 102x23,

where T
◦
ij(x3) are in units of MPa and −x3 ≥ 0 denotes the depth in units of mm. A comparison between our simulated

prestresses (solid curves) and the ‘‘real’’ prestresses (black dots) in state 1 are shown in Fig. 10, where the dot curves are the
fitting curves for the ‘‘real’’ prestresses. A comparison of the corresponding principal stresses is illustrated in Fig. 11, where
the solid curves are the simulated principal prestresses. From Figs. 10 and 11, we see that the quadratic approximation gives
good estimates of the stress profiles up to a depth of about 0.5 mm.

7. Closing remarks

In this paper we study the inverse problem on inferring depth profile of near-surface residual stress in a weakly
anisotropic medium by using the algorithm given in [10] for finding each term of a high-frequency asymptotic formula
for Rayleigh-wave dispersion. We show that, after the zeroth order terms are determined, Theorem 3.1 and Corollary 3.2
reduce the inverse problem to the routine work of solving iteratively systems of linear equations. We apply the theory
to the practical problem on monitoring retention of residual stress induced by the surface-conditioning treatment of low
plasticity burnishing on an aluminum thick plate sample if all other material parameters (including texture coefficients)
remain unchanged. Our study suggests that, if measurement of Rayleigh-wave velocity has an accuracy of ±0.1%, then the
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depth profile of the residual stress from the surface to a depth of 0.5 to 0.7 mm – with the upper limit depending on the
frequency window where velocity measurements have ±0.1% accuracy – can be recovered.

In practice, besides accuracy of the velocity measurements, there is one more crucial question to be answered for our
proposed method to be applicable. It is whether we can identify a frequency window [fm, fM ] which satisfies the following
three conditions: (i) fm should be high enough for some computable truncated version of the high-frequency formula derived
in [10] to be valid; (ii) fM should be sufficiently low that the effects of surface roughness on Rayleigh-wave dispersion can
be ignored for waves with frequencies within the window; (iii) dispersion of Rayleigh waves with frequencies within the
window should be sufficiently pronounced that information on near-surface stress can be extracted from the dispersion
data. All these depend on the specific material medium and sample in question. For example, condition (iii) depends most
notably on the size of the acoustoelastic effect for Rayleigh waves propagating in that medium, and condition (ii) depends
on the surface finish of the sample. Hence whether the proposed method would work for a specific application can only be
decided after careful study on a case-by-case basis.
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Appendix A. Details on constitutive equation of 7075-T651 aluminum sample

In this appendix we provide the details that complete the constitutive equation of the 7075-T651 aluminum sample
studied in this paper.

A.1. Material parameters

In our computations we take λ = 60.79 GPa and µ = 26.9 GPa, which correspond to the mean values of µ and Young’s
modulus E = 71.43 GPa obtained by Radovic et al. [33] in their RUS (resonant ultrasound spectroscopy) measurements
on sixteen 7075-T651 samples. As for the other 10 parameters, we are not aware of any experimentally determined value
reported in the literature. Hence we adopt the values predicted by the Man–Paroni model [20,34,35] from second-order
and third-order elastic constants of single-crystal pure aluminum reported by [36] and [37], respectively: α = −16.49 GPa,
β1 = 0.89, β2 = 0.96, β3 = −2.63, β4 = −4.54, b̃1 = −3.32, b̃2 = −0.61, b̃3 = 0.14, b̃4 = 1.54 and a = 12.10.

A.2. Texture coefficients

The texture coefficients of the sample that pertain to the treated surface and several depths (up to 0.225 mm) were
determined by X-ray diffraction and serial sectioning. They were found to be largely constant for the planes examined. In
this paper we simply take the texture coefficients to be constant for the entire sample. The values which refer to thematerial
OX ′Y ′Z ′ coordinate system are:

• W ′

400 = 0.00393, W ′

420 = −0.00083, W ′

440 = −0.00233, W ′

600 = 0.00025, W ′

620 = −0.0004, W ′

640 = −0.00033, and
W ′

660 = 0.00035.

A.3. Components of tensors Φ, Θ , and Ψ

All components of tensors below refer to the coordinate systemOXYZ defined in Section 2. Thematerial coordinate system
OX ′Y ′Z ′ has its OZ ′-axis agree with the OZ-axis. Let θ be the angle of rotation about the OZ axis which brings the OX axis to
the OX ′ axis (see Fig. 1 in Section 4).

An rth order tensor H is said to be harmonic if it is totally symmetric and traceless, i.e., its components Hi1 i2···ir satisfy
Hi1i2···ir = Hiτ (1) iτ (2)···iτ (r) for each permutation τ of {1, 2, . . . , r}, and trj,kH = 0 for any pair of distinct indices j and k. For
example, for r = 3 we have H112 = H121 = H211, etc. from total symmetry, and H111 + H212 + H313 = 0, etc. from the
traceless condition.

The fourth-order tensorΦ and the sixth-order tensorΘ are harmonic. All the non-trivial components ofΦ can be obtained
from the following five through the total symmetry of and the traceless condition on the harmonic tensor Φ:

Φ1122 = W ′

400 −
√
70W ′

440 cos 4θ, Φ1133 = −4W ′

400 + 2
√
10W ′

420 cos 2θ,



136 Y. Chen et al. / Wave Motion 77 (2018) 119–138

Φ2233 = −4W ′

400 − 2
√
10W ′

420 cos 2θ, Φ1112 = −
√
10W ′

420 sin 2θ +
√
70W ′

440 sin 4θ,

Φ2212 = −
√
10W ′

420 sin 2θ −
√
70W ′

440 sin 4θ.

The non-trivial components of Θ can be obtained from the following seven by using the total symmetry of and the
traceless condition on Θ:

Θ222211 = −W ′

600 −

√
105
15

W ′

620 cos 2θ +
√
14W ′

640 cos 4θ +
√
231W ′

660 cos 6θ,

Θ222233 = 6W ′

600 +
16

√
105

15
W ′

620 cos 2θ + 2
√
14W ′

640 cos 4θ,

Θ333311 = −8W ′

600 +
16

√
105

15
W ′

620 cos 2θ, Θ333322 = −8W ′

600 −
16

√
105

15
W ′

620 cos 2θ,

Θ122222 =

√
105
3

W ′

620 sin 2θ + 2
√
14W ′

640 sin 4θ +
√
231W ′

660 sin 6θ,

Θ122233 = −
8
√
105
15

W ′

620 sin 2θ − 2
√
14W ′

640 sin 4θ, Θ123333 =
16

√
105

15
W ′

620 sin 2θ.

The components of the sixth-order tensorsΨ (i)(w) are given in terms of those of the harmonic tensorΦ by the following
formulas:

Ψ
(1)
ijklmn = Φijklδmn, Ψ

(2)
ijklmn = Φklmnδij + Φijmnδkl,

Ψ
(3)
ijklmn = δikΦjlmn + δilΦjkmn + δjkΦilmn + δjlΦikmn,

Ψ
(4)
ijklmn = δimΦjnkl + δinΦjmkl + δjmΦinkl + δjnΦimkl + δkmΦlnij + δknΦlmij + δlmΦknij + δlnΦkmij,

where δij is the Kronecker delta.

Appendix B. Proof of Theorem 3.1

To prove Theorem 3.1, we start by observing how Zm (m = 1, 2, . . . , n) are affected by the first and the higher order
x3-derivatives of T

◦
(x3) at x3 = 0.

Lemma B.1. For m = 1, 2, . . . , n, Zm depends on T
◦
(0) and on the x3-derivatives of T

◦
(x3) at x3 = 0 up to those of order m; in

particular, Zm is of first order in the mth-order x3-derivative of T
◦
(x3) at x3 = 0.

Proof of Lemma B.1. We solve Lyapunov-type equations (20) and (21) in [10] to obtain Z1 and solve equations (23) to (25)
in [10] to obtain Zm (m = 2, 3, . . . , n). By the chain rule of differentiation for the composite function A(x3) = A(x3, T

◦
(x3)) =

(ars(x3)), dars/dx3|x3=0 is of first order in the first order x3-derivative of T
◦
(x3) at x3 = 0, whereas dmars/dxm3 |x3=0 depends on

the x3-derivatives of T
◦
(x3) at x3 = 0 up to those of order m and is of first order in the mth-order x3-derivative of T

◦
(x3) at

x3 = 0. Therefore, (19) of [10] implies that the right hand sides of (20) and (21) in [10] are of first order in the first order
x3-derivative of T

◦
(x3) at x3 = 0, whereas the right hand sides of (23) to (25) in [10] depends on the x3-derivatives of T

◦
(x3) at

x3 = 0 up to those of order m, and are of first order in the mth-order x3-derivative of T
◦
(x3) at x3 = 0. Hence the arguments

(26) through (27) in [10] proves the lemma. □

Proof of Theorem 3.1. The expression of vm in terms of Zk (k = 0, 1, . . . ,m) was given by Section 6 of [9] form = 1, 2 (see
also (37) and (38) of [10]). These expressions were obtained from (3.3) and the implicit function theorem, through which
we also have for a generalm

vm = −
Nm

m!D
(m = 1, 2, . . . , n), (B.1)

where

D =
∂R
∂v

⏐⏐⏐
v=v0, ε=0

, N1 =
∂R
∂ε

⏐⏐⏐
v=v0, ε=0

,

Nm =
∂mR
∂εm

⏐⏐⏐ v=v0,

ε=0

+

∑
k+l=m,
1≤l≤m,

0≤k≤m−1

m!

k! l!
∂k+lR

∂εk ∂vl ·

(dvR

dε

)l⏐⏐⏐ v=v0,

ε=0

+ · · · (m = 2, 3, . . . , n) (B.2)

and · · · on the right hand side of the preceding equation denotes a linear combination of the terms included in

∂k+lR
∂εk ∂vl ·

dm−k−l

dεm−k−l

(dvR

dε

)l⏐⏐⏐
v=v0, ε=0

(1 < k + l < m, 1 ≤ l).
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It then follows from (3.3) that

D =
∂R
∂v

⏐⏐⏐
v=v0, ε=0

=
∂

∂v
det Z0

⏐⏐⏐
v=v0

,

which does not depend on any component of the x3-derivatives of T
◦
(x3) at x3 = 0, and it also follows that

∂mR
∂εm

⏐⏐⏐ v=v0,

ε=0

=
∂m

∂εm det
[
Z0 + Z1 ε + Z2 ε2

+ · · · + Zm εm ] ⏐⏐⏐ v=v0,

ε=0

(m = 1, 2, . . ., n). (B.3)

Using the component-wise expression

Zk =
(
Z (k)
ij

)
, k = 0, 1, 2, . . . , n,

we observe from the definition of the determinant of a 3 × 3 matrix that

∂mR
∂εm

⏐⏐⏐ v=v0,

ε=0

=
∂m

∂εm

∑
σ∈S3

sgn(σ )
m∑
j=0

Z (j)
1σ (1) ε

j
·

m∑
k=0

Z (k)
2σ (2) ε

k
·

m∑
l=0

Z (l)
3σ (3) ε

l
⏐⏐⏐ v=v0,

ε=0

,

where S3 is the set of all permutations of {1, 2, 3}. Hence,
∂mR
∂εm

⏐⏐⏐ v=v0,

ε=0

=

∑
σ∈S3

sgn(σ )m!

(
Z (m)
1σ (1)Z

(0)
2σ (2)Z

(0)
3σ (3) + Z (0)

1σ (1)Z
(m)
2σ (2)Z

(0)
3σ (3) + Z (0)

1σ (1)Z
(0)
2σ (2)Z

(m)
3σ (3)

) ⏐⏐⏐
v=v0

+

∑
σ∈S3

sgn(σ )m!

∑
j+k+l=m,

0≤j,k,l≤m−1

Z (j)
1σ (1)Z

(k)
2σ (2)Z

(l)
3σ (3)

⏐⏐⏐
v=v0

,

where the second term on the right hand side is neglected when m = 1. The first term is linear in Zm, whereas the second
term is nonlinear function of Zk (k = 0, 1, . . . ,m − 1). Moreover, any order of the partial derivative of R(v, ε) with respect
to v does not affect the linearity in Zm. Hence only the first term on the right hand side of (B.2) depends on (and is of first
order in) Zm and the remaining terms are nonlinear functions of Zk (k = 0, 1, . . . ,m−1). This, combined with the preceding
lemma and (B.1), proves the theorem. □

References

[1] C.-S. Man, J. Li, W.-Y. Lu, X. Fan, Ultrasonic measurement of through-thickness stress gradients in textured sheet metals, in: D.O. Thompson, D.E.
Chimenti (Eds.), Review of Progress in Quantitative Nondestructive Evaluation, Vol. 19, American Institute of Physics, Melville, New York, 2000,
pp. 1613–1620.

[2] C.-S. Man, L. Koo, M.J. Shepard, Dispersion of Rayleigh waves in titanium alloy resulting from inhomogeneous residual stress induced by low plasticity
burnishing, in: D.O. Thompson, D.E. Chimenti (Eds.), Review of Progress in Quantitative Nondestructive Evaluation, Vol. 21, American Institute of
Physics, Melville, New York, 2002, pp. 1651–1658.

[3] A.I. Lavrentyev, W.A. Veronesi, Ultrasonic measurement of residual stress in shot peened aluminum alloy, in: D.O. Thompson, D.E. Chimenti (Eds.),
Review of Progress in Quantitative Nondestructive Evaluation, Vol. 20, American Institute of Physics, Melville, New York, 2001, pp. 1472–1479.

[4] A. Ruiz, P.B. Nagy, SAW dispersion measurements for ultrasonic characterization of surface-treated metals, Instrum. Mesure Métrologie 3 (2003)
59–85.

[5] M.A. Biot, Mechanics of Incremental Deformations, Wiley, New York, 1965.
[6] A. Hoger, On the determination of residual stress in an elastic body, J. Elasticity 16 (1986) 303–324.
[7] C.-S. Man, W.Y. Lu, Towards an acoustoelatic theory for measurement of residual stress, J. Elasticity 17 (1987) 159–182.
[8] C.-S. Man, D.E. Carlson, On the traction problem of dead loading in linear elasticity with initial stress, Arch. Ration. Mech. Anal. 128 (1994) 223–247.
[9] C.-S. Man, G. Nakamura, K. Tanuma, S. Wang, Dispersion of Rayleigh waves in vertically-inhomogeneous prestressed elastic media, IMA J. Appl. Math.

80 (2015) 47–84.
[10] K. Tanuma, C.-S. Man, Y. Chen, Dispersion of Rayleigh waves in weakly anisotropic media with vertically-inhomogeneous initial stress, Internat. J.

Engrg. Sci. 92 (2015) 63–82.
[11] A. Moreau, C.-S. Man, Laser-ultrasonic measurements of residual stresses in a 7075-T651 aluminum sample surface-treated with low plasticity

burnishing, in: D.O. Thompson, D.E. Chimenti (Eds.), Review of Progress in Quantitative Nondestructive Evaluation, Vol. 25, American Institute of
Physics, Melville, New York, 2006, pp. 1434–1441.

[12] H.J. Bunge, Texture Analysis in Materials Science, Butterworth’s, London, 1982.
[13] R.-J. Roe, Description of crystallite orientation in polycrystalline materials. III. General solutions to pole figure inversion, J. Appl. Phys. 36 (1965)

2024–2031.
[14] C.-S. Man, On the constitutive equations of some weakly-textured materials, Arch. Ration. Mech. Anal. 143 (1998) 77–103.
[15] W. Du, C.-S.Man,Material tensors and pseudotensors ofweakly-textured polycrystalswith orientation distribution function defined on the orthogonal

group, J. Elasticity 127 (2017) 197–233.
[16] L.C. Bidenharn, J.D. Louck, Angular Momentum in Quantum Physics, Cambridge University Press, Cambridge, 1984.
[17] D.A. Varshalovich, A.N. Moskalev, V.K. Khersonskii, Quantum Theory of Angular Momentum, World Scientific, Singapore, 1988.
[18] J.F. Bell, The experimental foundations of solidmechanics, in: C. Truesdell (Ed.), Mechanics of Solids, Vol. 1, Encyclopedia of Physics Vol. VIa/I, Springer,

Berlin, 1973, pp. 1–813.
[19] C.-S. Man, Hartig’s law and linear elasticity with initial stress, Inverse Problems 14 (1998) 313–319.
[20] C.-S. Man, Effects of crystallographic texture on the acoustoelastic coefficients of polycrystals, Nondestr. Test. Eval. 15 (1999) 191–214.
[21] K. Tanuma, C.-S. Man, W. Du, Perturbation of phase velocity of Rayleigh waves in pre-stressed anisotropic media with orthorhombic principal part,

Math. Mech. Solids 18 (2013) 301–322.

http://refhub.elsevier.com/S0165-2125(17)30133-6/sb1
http://refhub.elsevier.com/S0165-2125(17)30133-6/sb1
http://refhub.elsevier.com/S0165-2125(17)30133-6/sb1
http://refhub.elsevier.com/S0165-2125(17)30133-6/sb1
http://refhub.elsevier.com/S0165-2125(17)30133-6/sb1
http://refhub.elsevier.com/S0165-2125(17)30133-6/sb2
http://refhub.elsevier.com/S0165-2125(17)30133-6/sb2
http://refhub.elsevier.com/S0165-2125(17)30133-6/sb2
http://refhub.elsevier.com/S0165-2125(17)30133-6/sb2
http://refhub.elsevier.com/S0165-2125(17)30133-6/sb2
http://refhub.elsevier.com/S0165-2125(17)30133-6/sb3
http://refhub.elsevier.com/S0165-2125(17)30133-6/sb3
http://refhub.elsevier.com/S0165-2125(17)30133-6/sb3
http://refhub.elsevier.com/S0165-2125(17)30133-6/sb4
http://refhub.elsevier.com/S0165-2125(17)30133-6/sb4
http://refhub.elsevier.com/S0165-2125(17)30133-6/sb4
http://refhub.elsevier.com/S0165-2125(17)30133-6/sb5
http://refhub.elsevier.com/S0165-2125(17)30133-6/sb6
http://refhub.elsevier.com/S0165-2125(17)30133-6/sb7
http://refhub.elsevier.com/S0165-2125(17)30133-6/sb8
http://refhub.elsevier.com/S0165-2125(17)30133-6/sb9
http://refhub.elsevier.com/S0165-2125(17)30133-6/sb9
http://refhub.elsevier.com/S0165-2125(17)30133-6/sb9
http://refhub.elsevier.com/S0165-2125(17)30133-6/sb10
http://refhub.elsevier.com/S0165-2125(17)30133-6/sb10
http://refhub.elsevier.com/S0165-2125(17)30133-6/sb10
http://refhub.elsevier.com/S0165-2125(17)30133-6/sb11
http://refhub.elsevier.com/S0165-2125(17)30133-6/sb11
http://refhub.elsevier.com/S0165-2125(17)30133-6/sb11
http://refhub.elsevier.com/S0165-2125(17)30133-6/sb11
http://refhub.elsevier.com/S0165-2125(17)30133-6/sb11
http://refhub.elsevier.com/S0165-2125(17)30133-6/sb12
http://refhub.elsevier.com/S0165-2125(17)30133-6/sb13
http://refhub.elsevier.com/S0165-2125(17)30133-6/sb13
http://refhub.elsevier.com/S0165-2125(17)30133-6/sb13
http://refhub.elsevier.com/S0165-2125(17)30133-6/sb14
http://refhub.elsevier.com/S0165-2125(17)30133-6/sb15
http://refhub.elsevier.com/S0165-2125(17)30133-6/sb15
http://refhub.elsevier.com/S0165-2125(17)30133-6/sb15
http://refhub.elsevier.com/S0165-2125(17)30133-6/sb16
http://refhub.elsevier.com/S0165-2125(17)30133-6/sb17
http://refhub.elsevier.com/S0165-2125(17)30133-6/sb18
http://refhub.elsevier.com/S0165-2125(17)30133-6/sb18
http://refhub.elsevier.com/S0165-2125(17)30133-6/sb18
http://refhub.elsevier.com/S0165-2125(17)30133-6/sb19
http://refhub.elsevier.com/S0165-2125(17)30133-6/sb20
http://refhub.elsevier.com/S0165-2125(17)30133-6/sb21
http://refhub.elsevier.com/S0165-2125(17)30133-6/sb21
http://refhub.elsevier.com/S0165-2125(17)30133-6/sb21


138 Y. Chen et al. / Wave Motion 77 (2018) 119–138

[22] The Aluminum Association, Aluminum Standards and Data 2000, The Aluminum Association, Washington, DC, 2000.
[23] K. Tanuma, C.-S. Man, Angular dependence of Rayleigh-wave velocity in prestressed polycrystalline media with monoclinic texture, J. Elasticity 69

(2002) 181–214.
[24] A. Briggs, Acoustic Microscopy, Clarendon Press, Oxford, 1992.
[25] A. Lomonosov, A.P. Mayer, P. Hess, Laser controlled surface acoustic waves, in: M. Levy, H. Bass, R. Stern (Eds.-in-chief), A.G. Every, W. Sachse (volume

Eds.), Handbook of Elastic Properties of Solids, Liquids, and Gases, Vol. 1, Academic Press, New York, 2001, pp. 137–186.
[26] E. Drescher-Krasicka, J.R. Willis, Mapping stress with ultrasound, Nature 384 (1996) 52–55.
[27] Y.-C. Lee, J.O. Kim, J.D. Achenbach, Measurement of stresses by line-focus acoustic microscopy, Ultrasonics 32 (1994) 359–365.
[28] S.W. Meeks, D. Peter, D. Horne, K. Young, V. Novotny, Microscopic imaging of residual stress using a scanning phase-measuring acoustic microscope,

Appl. Phys. Lett. 55 (1989) 1835–1837.
[29] J.-i. Kushibiki, M. Arakawa, A method for calibrating the line-focus-beam acoustic microscopy system, IEEE Trans. Ultrason. Ferroelectr. Freq. Control

45 (1998) 421–430.
[30] A.M. Ruiz, P.B. Nagy, Diffraction correction for precision surface acoustic wave velocity measurements, J. Acoust. Soc. Am. 112 (2002) 835–842.
[31] A. Ruiz, P.B. Nagy, Laser-ultrasonic surface wave dispersion measurements on surface-treated metals, Ultrasonics 42 (2004) 665–669.
[32] Y. Zhan, C. Liu, X. Kong, Z. Lin, Experiment and numerical simulation for laser ultrasonicmeasurement of residual stress, Ultrasonics 73 (2017) 271–276.
[33] M. Radovic, E. Lara-Curzio, L. Riester, Comparison of different experimental techniques for determination of elastic properties of solids, Mater. Sci. Eng.

A 368 (2004) 56–70.
[34] C.-S. Man, R. Paroni, On the separation of stress-induced and texture-induced birefringence in acoustoelasticity, J. Elasticity 45 (1996) 91–116.
[35] R. Paroni, C.-S. Man, Two micromechanical models in acoustoelasticity: a comparative study, J. Elasticity 59 (2000) 145–173.
[36] J.F. Thomas, Third order elastic constants of aluminum, Phys. Rev. 175 (1968) 955–962.
[37] V.P.N. Sarma, P.J. Reddy, Third-order elastic constants of aluminium, Phys. Status Solidi A 10 (1972) 563–567.

http://refhub.elsevier.com/S0165-2125(17)30133-6/sb23
http://refhub.elsevier.com/S0165-2125(17)30133-6/sb23
http://refhub.elsevier.com/S0165-2125(17)30133-6/sb23
http://refhub.elsevier.com/S0165-2125(17)30133-6/sb24
http://refhub.elsevier.com/S0165-2125(17)30133-6/sb25
http://refhub.elsevier.com/S0165-2125(17)30133-6/sb25
http://refhub.elsevier.com/S0165-2125(17)30133-6/sb25
http://refhub.elsevier.com/S0165-2125(17)30133-6/sb26
http://refhub.elsevier.com/S0165-2125(17)30133-6/sb27
http://refhub.elsevier.com/S0165-2125(17)30133-6/sb28
http://refhub.elsevier.com/S0165-2125(17)30133-6/sb28
http://refhub.elsevier.com/S0165-2125(17)30133-6/sb28
http://refhub.elsevier.com/S0165-2125(17)30133-6/sb29
http://refhub.elsevier.com/S0165-2125(17)30133-6/sb29
http://refhub.elsevier.com/S0165-2125(17)30133-6/sb29
http://refhub.elsevier.com/S0165-2125(17)30133-6/sb30
http://refhub.elsevier.com/S0165-2125(17)30133-6/sb31
http://refhub.elsevier.com/S0165-2125(17)30133-6/sb32
http://refhub.elsevier.com/S0165-2125(17)30133-6/sb33
http://refhub.elsevier.com/S0165-2125(17)30133-6/sb33
http://refhub.elsevier.com/S0165-2125(17)30133-6/sb33
http://refhub.elsevier.com/S0165-2125(17)30133-6/sb34
http://refhub.elsevier.com/S0165-2125(17)30133-6/sb35
http://refhub.elsevier.com/S0165-2125(17)30133-6/sb36
http://refhub.elsevier.com/S0165-2125(17)30133-6/sb37

	Monitoring near-surface depth profile of residual stress in weakly anisotropic media by Rayleigh-wave dispersion
	Introduction
	Constitutive equation
	Dispersion of Rayleigh waves in weakly anisotropic media with vertically-inhomogeneous initial stress
	An inverse problem on monitoring of stress retention
	Determination of  T  ∘ 11(0),  T  ∘ 22(0), and  T  ∘ 12(0) 
	Determination of the parameters am, bm, and cm (m=1,2,3) in (3.5)

	Recovery of near-surface depth profile of residual stress
	The ``unknown''  T  ∘ (x3)
	Experimental considerations
	Measurement error and frequency window for simulated data
	Simulation of velocity and dispersion data
	Predictions and comparisons

	The second-order approximation
	Closing remarks
	Acknowledgments
	Details on constitutive equation of 7075-T651 aluminum sample
	Material parameters
	Texture coefficients
	Components of tensors Φ, Θ, and Ψ

	Proof of Theorem 3.1
	References


