
Published in Metamaterials June 6, 2013; DOI 10.1016/j.metmat.2013.05.003
http://dx.doi.org/10.1016/j.metmat.2013.05.003

Multiscale Methods for Engineering Double

Negative Metamaterials

Yue Chen

Department of Mathematics

University of Kentucky

Lexington, KY 40506, USA.

email: chenyue0715@uky.edu

Robert Lipton

Department of Mathematics

Louisiana State University

Baton Rouge, LA 70803, USA.

email: lipton@math.lsu.edu

Abstract

Key words: Metamaterial, dispersion relation, dissipative media

The approach taken here solves the Maxwell equations inside metamaterial crystals directly and
explicitly with no approximations made. The Bloch wave solution and dispersion relation is given
by a power series in the ratio between wave number and period. Each term is iteratively defined by
the solution of an auxiliary problem depending on the configuration and shapes of the scatterers.
The leading order term in the power series for the dispersion relation is given by the complex effective
index of refraction. The effective properties and their resonance frequencies depend explicitly on
the shape of the scatterers. Double negative behavior is explicitly controlled by the location of
resonance frequencies related to spectra intrinsic to the geometric configuration of the multi-phase
inclusions. This provides for the rational shape design of inclusions for control of double negative
behavior across prescribed frequency ranges.

1 Introduction

A compelling aspect of metamaterials research is the quest for new sub-wavelength microstructures
that deliver both negative bulk dielectric constant and bulk magnetic permeability across prescribed
frequency intervals. Double negative materials offer great potential for applications in biomedical
imaging, optical lithography and data storage. Such media support electromagnetic waves for which
the phase velocity is antiparallel to the direction of energy flow as well as other unusual electromag-
netic effects such as the reversal of the Doppler effect and Cerenkov radiation [41].

Double negative metamaterials are characterized by sub-wavelength microstructure and control
radiation through a delicate combination of local and global resonances. This approach to control-
ling wave propagation is distinct from approaches using photonic materials which control radiation
through multiple diffraction implemented by structuring the medium along the same length scale as
the wave length of the incident radiation. Pendry [29] demonstrated that unconventional properties
can be derived from sub-wavelength configurations of different conventional materials. It was shown
that a cubic lattice of metal wires exhibited behavior associated with negative bulk dielectric con-
stant near the plasma resonance of the structure. This resonance frequency is intrinsic to the lattice
and lies in the microwave regime six decades below the plasma resonance of the metal used to make
the lattice. Subsequently non-magnetic metallic split-ring resonators were constructed to deliver
negative effective magnetic permeability at microwave frequencies [28]. In more recent work Smith
et al. [39] experimentally demonstrated that arrays of metallic posts and split ring resonators could
also support resonances at microwave frequencies and deliver negative effective negative refractive
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index for a range of microwave frequencies. Subsequent work has delivered several new configura-
tions of metallic resonators for double negative behavior [15, 19, 34, 46, 47, 48]. New designs for
generating double negative properties in the optical regime rely on Mie resonances. One scheme
employs coated rods made from a high dielectric core coated with a frequency dependent dielectric
plasmonic or Drude type behavior at optical frequencies [43, 44, 45]. Other schemes employ small
particles made from dielectric materials with large permittivity, [20, 30, 42]. Alternate strategies
for generating negative bulk dielectric permeability at infrared and optical frequencies use special
configurations of plasmonic nanoparticles [1], [37]. The list of metamaterial designs continues to
grow and recent reviews of the subject can be found in [32] and [33].

In this article we focus on a class of simple microstructures and investigate the range of double
negative behavior that one can engineer using lossy nonmagnetic materials. The main point of the
article is to introduce a multi-scale method for exploring the universe of sub-wavelength microstruc-
tures that links the geometry of the microstructure to the actual dispersion relations for the medium
without making use of any simplifying approximation (e.g. the dipole approximation). Here we
consider periodic arrays of nonmagnetic scatterers made from two distinct materials. We present
a systematic method for recovery of the band structure of the metamaterial. Each branch of the
dispersion relation is given by power series in the ratio of period to wave number. The leading order
term in the expansion is the effective complex index of refraction for the medium. Figures displaying
the real and imaginary parts of the leading order dispersion relation for several different bands are
displayed in section 3 see, Figures 4(a) through 4(d). The higher order terms in the series involve
corrections for spatial dispersion. When the media is assumed lossless the power series for each
branch is shown to converge, see [12]. This is also true for lossy materials. This expansion provides
the rigorous and explicit connection between microgeometry and dispersion. It provides the oppor-
tunity for the systematic design of sub-wavelength structures for control of dispersion based on the
shape and topology of the inclusions used in the microgeometry. This is taken up in section 3 where
several simulations exhibiting the sensitivity of the dispersion relations to the underlying geometry of
the scatterers is presented. The methodology provides a way to systematically identify the location
of the center frequency and band width of double negative intervals through calculation of auxiliary
spectral problems intrinsic to the geometry. Table 1 of section 3 illustrates how the center frequency
and band width of a preselected double negative interval can be adjusted by changing the geometry
of the scatterer. This methodology presented here is a multiscale approach in that the Maxwell
equations are solved exactly in terms of a power series that has as its expansion parameter the ratio
between the crystal period and the wave number. When the expansion parameter is small and the
crystal period is subwavelength the leading order terms in the dispersion relation control the physics.
For larger values of the expansion parameter when the crystal period is closer to the wavelength
of propagation the higher order terms in the series become important in describing nonlocal effects
such as spatial dispersion.

To demonstrate the method we construct metamaterials made from sub-wavelength periodic
arrangements of nonmagnetic infinitely long parallel coated cylinders immersed in a nonmagnetic
host. In what follows the period of the lattice is denoted by d. The coated cylinders are parallel to
the x3 axis and made from a frequency independent high dielectric core and a frequency dependent
dielectric plasmonic coating (Figure 1). The host medium containing the coated rods has relative
dielectric permittivity equal to unity. To generate effective magnetic properties the material com-
prising the core of the rod is chosen to be a high contrast dielectric material ǫR = γ/d2 see, [9]. The
dielectric coating is frequency dependent and characterized by single oscillator model that includes
dissipation.

The approach taken here solves the Maxwell equations directly and explicitly with no approxima-
tions made. The solution is given by a power series with each term iteratively defined by the solution
of an auxiliary problem that is simpler than the original Maxwell system. In what follows we apply
the power series method to identify the dispersion relation for TE modes with magnetic field parallel
to the cylinders. The leading order term in the power series for the dispersion relation is given by
the complex effective index of refraction expressed in terms of the effective magnetic permeability
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Figure 1: Periodic array of coated dielectric rods with period d

and effective dielectric permittivity tensor. These tensors are seen to resonate at frequencies related
to spectra intrinsic to the cross-sectional shape and configuration of the coated rods. It is the in-
terlacing of the eigenvalues associated with two distinct spectra that determine frequency intervals
over which double negative behavior occur. The first spectra identified by the power series method
is the Dirichlet spectra of the cross-sectional shape of the rod core. This spectra is local and depends
only on the shape of each rod core. The second spectra is a type of electrostatic spectra associated
with a three phase medium and is global and intrinsic to the structural geometry. This spectra is
associated with the configuration of the periodic structure and the relative position of the scatterers
with respect to each other. Both spectral problems emerge naturally from the power series method
and are not part of any imposed hypotheses. Electrostatic spectra for two phase materials has been
recognized as useful in characterizing electromagnetic properties of periodic nano structures see, for
example [37]. Earlier pioneering work [4], [23], identified electrostatic modes and showed how their
use allows for the separation of the dielectric properties of the component materials from underlying
geometric effects due to the structure of two-phase composites. Numerical methods for computation
of electrostatic spectra for complex two-phase structures are developed in [24]

For the problem at hand we apply the strategy developed by the authors in [12] and [11] to express
the complex effective dielectric constant in terms of a new type of three phase electrostatic spectra.
The effective dielectric constant is expressed in a spectral representation formula that explicitly links
the configuration of the scatters to effective properties. Similarly the Dirichlet spectra delivers a
representation formula for the magnetic permittivity. This formula agrees with the representation
formula for the magnetic permittivity developed in the work of [9] for periodic arrays of high dielectric
rods. In this article we provide explicit power series for the associated Bloch wave solutions and
dispersion relations. The full details of all higher order boundary value problems can be found in
[12], [11]. We apply the power series representation to calculate the average Poynting vector to show
that in the homogenization limit the energy flow and phase velocity are in opposite directions over
frequency intervals associated with double negative behavior. We also point out that the double
negative behavior is not the necessary and sufficient condition for the energy flow to be opposite to
the phase velocity and identify necessary and sufficient conditions for which it is so see, section 4.
We compute center frequency and bandwidth of double negative intervals for several choices of inner
and outer radii of the rod coating and compare these with the dispersion curves for the imaginary
part of the wave number versus frequency. From this we can identify which design delivers a double
negative interval associated with the least attenuation of average electromagnetic energy flow (4.3)
see, Figure 4 of section 3 and the following discussion.

We conclude the introduction noting that formulas for frequency-dependent effective magnetic
permeability together with conditions for generation of negative effective permeability are developed
in [7, 8, 9, 14, 16, 21]. For periodic arrays made from metal fibers a homogenization theory de-
livering negative effective dielectric constant [6] has been established. A novel method for creating
metamaterials with prescribed effective dielectric permittivity and effective magnetic permeability
at a fixed frequency is developed in [26]. New methodologies and issues for computing homogenized
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properties for metamaterials using top down approaches are presented in [2], [3], [38]. Earlier work
on the power series approach to sub-wavelength analysis has been developed and applied in [17]
for characterizing the dynamic dispersion relations for Bloch waves inside plasmonic crystals. It
has also been applied to assess the influence of effective negative permeability on the propagation
of Bloch waves inside high contrast dielectrics [18], the generation of negative permeability inside
metallic - dielectric resonators [36], and for concentric coated cylinder assemblages generating a
double negative media [13].

2 Power series representations

We start with a metamaterial crystal characterized by a period cell containing a centered coated
cylinder with plasmonic coating and high dielectric core. The core radius and the coating radius are
denoted by a and b respectively (Figure 2). The cylinder is parallel to the x3 axis and is periodically
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Figure 2: The period cell: R represents the high dielectric core, P the plasmonic coating and H
denotes the connected host material.

arranged within a square lattice over the transverse x = (x1, x2) plane. The period of the lattice is
denoted by d. For TE-polarized Bloch-waves, the magnetic field is aligned with the cylinders and
the electric field lies in the transverse plane. The direction of propagation is described by the unit
vector κ̂ = (κ1, κ2) and k ∈ C is the complex wave number and the fields are of the form

H3 = H3(x)e
i(kκ̂·x−tω), E1 = E1(x)e

i(kκ̂·x−tω), E2 = E2(x)e
i(kκ̂·x−tω) (2.1)

where H3(x), E1(x), and E2(x) are d-periodic for x in R
2. Here c denotes the speed of light in free

space. We denote the unit vector pointing along the x3 direction by e3, and the periodic dielectric
permittivity and magnetic permeability are denoted by ad and µ respectively. The electric field
component E = (E1, E2) of the wave is determined by

E = − ic

ωad
e3 ×∇H3. (2.2)

The materials are assumed non-magnetic hence the magnetic permeability µ is set to unity inside
the coated cylinder and host. The oscillating dielectric permittivity for the crystal is a d periodic
function in the transverse plane and is described by ad = ad(x/d) where ad(y) is the unit periodic
dielectric function taking the values

ad(y) =











ǫH in the host material,

ǫP (ω) in the frequency dependent “plasmonic” coating,

ǫR = γ/d2 in the high dielectric core.

(2.3)
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Here γ in a complex number and has dimensions of area and the frequency dependent permittivity
ǫP of the plasmonic coating is given by

ǫP (ω) = 1−
ω2
p

ω2 + iωcω
, (2.4)

where the paramaters are the incident frequency ω, the damping constant ωc and the plasma fre-
quency ωp. Setting hd(x) = H3(x)e

i(kκ̂·x) the Maxwell equations take the form of the Helmholtz
equation given by

−∇x ·
(

a−1
d (

x

d
)∇xh

d(x)
)

=
ω2

c2
hd in R

2. (2.5)

We set x = dy for y inside the unit period Y = [−0.5, 0.5]2, put β = dkκ̂ and write u(y) =
H3(dy). The dependent variable is written ud(y) = hd(dy) = u(y) expiβ·y, and we recover the
equivalent problem over the unit period cell given by

−∇y ·
(

a−1
d (y)∇yu

d
)

=
d2ω2

c2
ud in Y. (2.6)

We start by introducing the power series in terms of the ratio of period size to wavelength η = dk
and frequency ξ = ω

kc .
For these parameters the dielectric permittivity in the coating takes the value ǫP (ξk) = 1 −

ω2

p/c
2

(ξk)2+i(ωc/c)(ξk)
, and (2.6) is given by

−∇y ·
(

a−1
d (y)∇yu

d(y)
)

= η2ξ2ud(y) in Y. (2.7)

The unit period cell for the generic metamaterial system is represented in Figure 2. In what
follows R represents the rod core cross section containing high dielectric material, P the coating
containing the plasmonic material and H denotes the connected host material. The jump conditions
implied by (2.7) are given by

n · ∇yu
d
|H

= n · ǫ−1
P (ξk)n · ∇yu

d
|P
, H-P interface, (2.8)

n · ǫ−1
P (ξk)∇yu

d
|P

= n · d
2

γ
∇yu

d
|R
,R-P interface. (2.9)

Here “H-P” interface denotes the interface separating host from the plasmonic coating and “R-P”
interface denotes the interface separating the rod core material and the plasmonic coating and n
denotes the normal vectors pointing from the core into the coating on the “R-P” interface and the
coating into the host on the “H-P” interface.

Expanding the Bloch wave ud eigenvalue ξ pair in power series

ud = u0

∞
∑

m=0

ηmimψme
iκ̂·τρy (2.10)

ξ =

∞
∑

m=0

ηmξm (2.11)

and substitution of (2.10) and (2.11) into (2.7), (2.8), (2.9) we equate like powers of η to identify the
boundary value problem satisfied by each term in the power series. Here u0 is an arbitrary constant
factor appearing in front of the sum (2.10). The leading order dispersion relation is given by

ξ20 = n−2
eff (ξ0k), (2.12)

where the complex effective index of diffraction n2eff depends upon the direction of propagation κ̂
and is written

n2eff (ξ0k) = µeff (ξ0k)/ǫ
−1
eff (ξ0k)κ̂ · κ̂. (2.13)
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The frequency dependent complex effective magnetic permeability µeff and complex effective di-
electric permittivity ǫeff are given by

µeff (ξ0) =

∫

Y

ψ0 = θH + θP +
∞
∑

n=1

µn < φn >
2
R

µn − γk2ξ20
(2.14)

and

ǫ−1
eff (ξ0)κ̂ · κ̂ =

∫

Y \R

a−1
d (y)(∇ψ1 + κ̂) · κ̂ dy

= θH + ǫ−1
P (ξ0k)θP (2.15)

−
∑

−1/2<λh<1/2

(

|α(1)
λh

|2 + 2ǫ−1
P (ξ0k)α

(1)
λh
α
(2)
λh

+ ǫ−2
P (ξ0k)|α(2)

λh
|2

1 + (ǫ−1
P (ξ0k)− 1)( 12 − λh)

)

,

where θH and θP are the areas occupied by regions H and P respectively. The magnetic Bloch wave
solution of (2.5) is given by

H3 = u0

(

ψ0(x/d) +

∞
∑

l=1

(τρ)lilψl(x/d)

)

exp {i (kκ̂ · x− tω)} . (2.16)

These expansions and leading order dispersion relations are found following the methods developed
in [12]. The poles µn of the effective magnetic permeability function (2.14) are given by the Mie
resonances of the rod core which for this case are given by the Dirichlet spectrum of the core cross
section. The poles λh of the effective dielectric permittivity function (2.15) occur at the electrostatic
resonances (also known as plasmon resonances) of the structure. For a lattice of period d the power
series representation applies and the leading order dispersion relation dominates provided that the
dielectric constant ǫR in the rod core is large and on the order of 1/d2.

From a physical perspective the plasmon resonances are associated with source free fields. These
resonances occur at frequencies for which free-space wavelengths are large in comparison with the
transverse dimension of the rods, i.e., |η| = |kd| < 1. For this case the time harmonic electromagnetic
fields surrounding the coated rod and within the coating vary almost with the same phase. Hence
at any instant of time these fields appear to be electrostatic. When the dielectric permittivity of
the metallic coating is negative, source-free electrostatic fields will appear within the coating and
in the region surrounding the rods. It is these electrostatic resonances or plasmons that provide
the poles of the effective dielectric permittivity function. Here the electrostatic resonances can
occur only in media with dispersive dielectric properties for which the real part of the dielectric
permittivity assumes negative values for some range of frequencies. For the metal coating used here,
this frequency range is below the plasma frequency given by the Drude model (2.4).

3 Dispersion curves

In this section, we recover leading order behavior for the dispersive behavior of the metamaterial
for periods with finite size d > 0. To proceed we fix d = c/ωp. In these variables the power series
expansion for the dispersion relation is given by

(

ω

ωp

)2

=

(

ω0

ωp

)2

+

∞
∑

l=1

(dk)l
(

ωl

ωp

)2

, (3.1)

where higher order terms ωl are functions of ω0. To leading order the dispersion relation is given by
[12], [11],

(dk)2 =

(

ω0

ωp

)2

n2eff (3.2)
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where the complex effective refractive index neff depends on the direction of propagation κ̂ and
normalized frequency ω0

ωp
and is given by

n2eff = µeff (
ω0

ωp
)/(ǫ−1

eff (
ω0

ωp
)κ̂ · κ̂). (3.3)

Note that dk = dkr + idki where kr and ki are the real and imaginary parts of k.
With this choice we can write out the real and imaginary parts of µeff explicitly as follows

Re(µeff ) = θH + θP +

∞
∑

n=1

µn < φn >
2
R (ǫ′Rµn − ǫ′R(

ω0

ωp
)2)

µ2
n − 2µnǫ′R(

ω0

ωp
)2 + |ǫR|2(ω0

ωp
)4

(3.4)

and

Im(µeff ) =
∞
∑

n=1

µn < φn >
2
R ǫ′′R(

ω0

ωp
)2

µ2
n − 2µnǫ′R(

ω0

ωp
)2 + |ǫR|2(ω0

ωp
)4

(3.5)

where ǫR = ǫ′R + iǫ′′R. Before writing out the real and imaginary parts of ǫ−1
eff κ̂ · κ̂, for convenience,

we set

Ah =

(

(

(
ω0

ωp
)2 − 1

)2

− (
ωc

ωp
)2(

ω0

ωp
)2

)

|α(1)
λh

|2 + 2(
ω0

ωp
)2
(

(
ω0

ωp
)2 − (

ωc

ωp
)2 − 1

)

α
(1)
λh
α
(2)
λh

+(
ω0

ωp
)2
(

(
ω0

ωp
)2 − (

ωc

ωp
)2
)

|α(2)
λh

|2,

Bh = 2(
ωc

ωp
)(
ω0

ωp
)

(

(
ω0

ωp
)2 − 1

)

|α(1)
λh

|2 + 2(
ωc

ωp
)(
ω0

ωp
)

(

2(
ω0

ωp
)2 − 1

)

α
(1)
λh
α
(2)
λh

+2(
ωc

ωp
)(
ω0

ωp
)3|α(2)

λh
|2,

Ch =

(

(
ω0

ωp
)2 − 1

)2

− (
ωc

ωp
)2(

ω0

ωp
)2 + (

1

2
− λh)

(

(
ω0

ωp
)2 − 1

)

,

Dh = 2(
ωc

ωp
)(
ω0

ωp
)

(

(
ω0

ωp
)2 − 1

)

+ (
1

2
− λh)(

ωc

ωp
)(
ω0

ωp
).

Then the real and imaginary parts of ǫ−1
eff κ̂ · κ̂ are given by

Re(ǫ−1
eff κ̂ · κ̂) = θH +

(ω0

ωp
)2
(

(ω0

ωp
)2 + (ωc

ωp
)2 − 1

)

(

(ω0

ωp
)2 − 1

)

+ (ωc

ωp
)2(ω0

ωp
)2
θP −

∑

−1/2<λh<1/2

AhCh +BhDh

C2
h +D2

h

(3.6)

and

Im(ǫ−1
eff κ̂ · κ̂) = −

(ωc

ωp
)(ω0

ωp
)

(

(ω0

ωp
)2 − 1

)

+ (ωc

ωp
)2(ω0

ωp
)2
θP +

∑

−1/2<λh<1/2

AhDh −BhCh

C2
h +D2

h

. (3.7)

Table 1 shows the changes of the double negative interval when inner radius and outer radius
vary. In each cell, the upper number denotes the length of the frequency interval where both real
parts of µeff and ǫ−1

eff κ̂ · κ̂ are negative. The lower number shows the center value of ω0

ωp
in the double

negative interval. Figure 3 shows the real and imaginary parts of µeff and ǫ−1
eff κ̂ · κ̂ associated with

different choice of inner radius a and outer radius b when ǫR = 200 + i5 and ωc/ωp = 0.01. Here
Im(ǫ−1

eff κ̂ · κ̂) ≤ 0 and the imaginary part of the effective dielectric constant ǫi given by (4.5) is
positive. The green strip gives the interval in which both real parts of µeff and ǫeff are negative.
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a = 0.5b a = 0.55b a = 0.6b a = 0.65b
b=0.3 0 0 0 0.0332

(0.8919)
b=0.35 0 0.02733 0.03824 0.04425

(0.9003) (0.8315) (0.7716)
b=0.4 0.03541 0.04204 0.04893 0.05579

(0.8707) (0.7960) (0.7345) (0.6830)
b=0.45 0.04366 0.05143 0.05944 0.06801

(0.7795) (0.7141) (0.6605) (0.6161)

Table 1: The changes of the double negative interval when inner radius and outer radius vary. In
each cell, the upper number denotes the length of the interval where both real parts of µeff and
ǫ−1
eff κ̂ ·κ̂ are negative. The lower number shows the center value of ω0

ωp
in the double negative interval.

(a) (b)

(c) (d)

Figure 3: Real and imaginary part of the effective permittivity and permeability associated with
different choice of inner and outer radii for the coating, when ǫR = 200 + i5 and ωc/ωp = 0.01. The
green strip gives the interval where the real parts of µr = µeff and ǫr = ǫ−1

eff κ̂ · κ̂/|ǫ−1
eff κ̂ · κ̂|2 are

both negative. (a) is for a = 0.5b, b = 0.4; (b) for a = 0.6b, b = 0.4; (c) for a = 0.5b, b = 0.45; (d)
for a = 0.65b, b = 0.45.

(a) is for the case a = 0.5b, b = 0.4, (b) for a = 0.6b, b = 0.4, and (c) for a = 0.5b, b = 0.45, and (d)
for a = 0.65b, b = 0.45. It highlights the changes of the double negative interval with respect to the
change in the inner and outer radii of the coating. Figure 4 shows the dispersion curves associated
with different choices of inner radius a and outer radius b when, ǫR = 200+i5 and ωc/ωp = 0.01. The
dashed line corresponds to the imaginary part dki while the solid line corresponds to the real part
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dkr. The green strip denotes the interval where µr = Re(µeff ) and ǫr = Re(ǫ−1
eff κ̂ · κ̂)/|ǫ−1

eff κ̂ · κ̂|2
are both negative. (a) is for the case a = 0.5b, b = 0.4, (b) for a = 0.6b, b = 0.4, (c) for a = 0.5b,
b = 0.45, and (d) for a = 0.65b, b = 0.45. From Figure 4 we see that the double negative interval

(a) (b)

(c) (d)

Figure 4: Dispersion curves associated with different choice of inner and outer radii for the coating,
when ǫR = 200 + i5 and ωc/ωp = 0.01. The dashed line corresponds to the imaginary part dki,
the solid line corresponds to the real part dkr. The green stip gives the interval where Re(µeff )
and Re(ǫ−1

eff κ̂ · κ̂) are both negative. (a) is for a = 0.5b, b = 0.4; (b) for a = 0.6b, b = 0.4; (c) for
a = 0.5b, b = 0.45; (d) for a = 0.65b, b = 0.45.

associated with case (a), the inner and outer coating radii of a = 0.5b and b = 0.4, is associated with
the least attenuation of average electromagnetic energy flow (4.3) along the direction of propagation.

4 Homogenization and energy flow in the double negative

regime

For TE-polarized waves, the magnetic field H(x/d) = (0, 0, H3(x/d)) where H3(x/d) is given by
(2.16) and the electric field E(x/d) = (E1(x/d), E2(x/d), 0). Both fields are related through (2.2).
Therefore

E(x/d) =
ic

ωad
∂x2

H3(x/d)e1 − ic

ωad
∂x1

H3(x/d)e2, (4.1)
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where ei is the unit vector along the xi direction for i = 1, 2, 3. The time average of the Poynting
vector is given by

Pd =
1

2
Re[E(x/d)×H(x/d)]

=
1

2
Re[E2(x/d)H3(x/d)e1 − E1(x/d)H3(x/d)e2]. (4.2)

Consider any fixed averaging domain D transverse to the cylinders and the spatial average of the
electromagnetic energy flow along the direction κ̂ over this domain is written 〈Pd · κ̂〉D. Substi-
tuting (2.16) and (4.1) into (4.2) and taking the limit of (4.2) as d → 0 shows that the average
electromagnetic energy flow along the direction κ̂ is given by

lim
d→0

〈Pd · κ̂〉D = Re

(

µeff

neff

) |u0|2
2

exp(−2Im(k)κ̂ · x). (4.3)

In the d→ 0 limit, the phase velocity of the effective medium is along the direction κ̂ and determined
by

vp =
c

Re(neff )
κ̂. (4.4)

For future reference we denote µr = Re(µeff ), µi = Im(µeff ) and

ǫr = Re(ǫeff ) =
Re(ǫ−1

eff κ̂ · κ̂)
|ǫ−1
eff κ̂ · κ̂|2

, ǫi = Im(ǫeff ) =
−Im(ǫ−1

eff κ̂ · κ̂)
|ǫ−1
eff κ̂ · κ̂|2

. (4.5)

There are two resultant complex refractive indices, neff± = ±√
µeff ǫeff where µeff = µr + iµi and

ǫeff = ǫr + iǫi. Now neff± can be written as

neff± = ±
√

|µeff ||ǫeff | exp(iφn), φn =
φǫ + φµ

2
. (4.6)

Here φǫ and φµ are the arguments of ǫeff and µeff respectively. They satisfy 0 ≤ φǫ, φµ ≤ π.
Therefore φn ∈ [0, π]. Then we find that

Re

(

µeff

neff+

)

> 0 and Re

(

µeff

neff−

)

< 0. (4.7)

Hence when Re(neff+) < 0 (and Re(neff−) > 0), (4.3) and (4.4) show that in the homogenization
limit the energy flow and phase velocity are in opposite directions. Re(neff+) < 0 indicates that
φn ∈ [π/2, π]. Three cases should be considered: (i)π2 ≤ φǫ ≤ π, π − φǫ ≤ φµ ≤ π

2 ; (ii)
π
2 ≤ φµ ≤

π, π − φµ ≤ φǫ ≤ π
2 ; (iii)

π
2 ≤ φǫ, φµ ≤ π. Straightforward calculation shows that Re(neff+) < 0 is

equivalent to the following inequality

µr|ǫeff |+ ǫr|µeff | < 0. (4.8)

We notice that if µr < 0 and ǫr < 0, then (4.8) holds. In other words, if Re(µeff ) < 0 and
Re(ǫ−1

eff κ̂ · κ̂) < 0, then Re(neff+) < 0, hence in the homogenization limit the energy flow and phase
velocity are in opposite directions. However it should remarked that µr < 0 and ǫr < 0 are not
the necessary and sufficient condition for (4.8). That is, the frequency interval such that the phase
velocity is opposite to the energy flow should be larger than the interval in which the real parts of
µeff and ǫ−1

eff κ̂ · κ̂ are both negative.
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5 Electrostatic resonances, plasmons, and Mie resonances

In what follows we describe the eigenvalue problems for the source free fields associated with electro-
static resonances (i.e., plasmon resonances) and Mie resonances. Here the Mie resonances are asso-
ciated with the rod core and are precisely the eigenfunctions associated with the Dirichlet spectrum
of the core cross section. While the electrostatic resonances are expressed by generalized source free
fields permeating the rod coating and host. These resonances while not interacting directly control
the physics of the dispersion relation to leading order by fixing the poles of the frequency dependent
dielectric permittivity (electrostatic resonances) and the poles of the effective magnetic permeability
(Dirichlet resonances). The first two terms in the power series expansion for the magnetic field ψ0

and ψ1 are expressed in terms of the eigenfunctions associated with these resonances. To start we
write down the boundary value problems determining ψ0 and ψ1 obtained by equating like powers
of the series expansion. The first term ψ0 solves the following problem outside the rod core R on
the domain Y \R given by

−∇y ·
(

a−1
0 (y)∇yψ0(y)

)

= 0 in Y \R (5.1)

with n · ∇yψ0 = 0 on the boundary of R. Here a−1
0 = 1 in the host and a−1

0 = ǫ−1
P (ξ0k) in the

coating. Equation (5.1) is an electrostatic resonance problem associated with a period cell containing
a coated rod with core of infinite dielectric constant immersed in a host of unit dielectric constant. As
written it appears to depend on the material properties of the coating. However we follow [12], [11]
to see that it can be written as an equivalent electrostatic spectral problem depending only on the
periodic coated rod configuration. The eigenpairs ψλn

, λn for the electrostatic problem depend only
on geometry and are independent of the dielectric properties of the coating and solve the following
electrostatic resonance problem intrinsic to the structure given by

∇y · (σ(y)∇yψλn
) = λn∆yψλn

, on Y \R, (5.2)

with n ·∇yψλn
= 0 on the boundary of R and σ = −1/2 in the coating and σ = 1/2 in the host. It is

shown in [12] that the only non-constant solutions of (5.1) are given by the plasmons ψλn
and only

when ǫ−1
P (ξ0k) = (λn + 1/2)/(λn − 1/2). Hence we suppose that ǫ−1

P (ξ0k) 6= (λn + 1/2)/(λn − 1/2)
and we can choose ψ0 = 1 for points inside Y \R. The theory developed in [12] shows the generalized
electrostatic spectra {λn} lies in the open interval (−1/2, 1/2) with zero being the only accumulation
point. The plasmons {ψλn

}∞n=0 associated with the electrostatic resonances {λn}∞n=1 form a complete
orthonormal set of functions in the space of mean zero periodic functions belonging to H1

per(Y \R)
that are harmonic in P and H, [12]. Here orthonormality is with respect to the inner product
(u, v) =

∫

Y \R
∇u · ∇v dx. The complete orthonormal systems of eigenfunctions associated with

electrostatic resonances and Dirichlet eigenvalues are used to solve for ψ0 and ψ1 in H ∪ P . We
follow [12] to find that

−∆ψ0 = γk2ξ20ψ0, in R (5.3)

with ψ0 = 1 on the boundary of R. We also find that ψ1 is the solution of

−∆ψ1 = 0, in P and in H (5.4)

and the corresponding transmission conditions for ψ1 are given by

n · (∇ψ1 + κ̂)
|H

= n · ǫ−1
P (ξ0k) (∇ψ1 + κ̂)

|P

, H-P interface, (5.5)

n · ǫ−1
P (ξ0k) (∇ψ1 + κ̂)

|P

= 0, R-P interface. (5.6)

Expanding ψ1 in terms of the complete set of orthonormal eigenfunctions {ψλn
} we obtain the the

representation

ψ1 = −
∑

−1/2<λn<1/2

(

(α1
λn

+ ǫ−1
P (ξ0k)α

2
λn

)

1 + (ǫ−1
P (ξ0k)− 1)( 12 − λn)

)

ψλn
, in Y \R (5.7)
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with

α1
λn

= κ̂ ·
∫

H

∇ψλn
dy, and α2

λn
= κ̂ ·

∫

P
∇ψλn

dy. (5.8)

A straight forward calculation gives ψ0 in R in terms of the complete set of Dirichlet eigenfunctions
and eigenvalues {µn} and {φn}:

ψ0 =

∞
∑

n=1

µn < φn >R

µn − γk2ξ20
φn, in R, with (5.9)

< φn >R=

∫

R

φn dy. (5.10)
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