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Herein we present a procedure by which a high-frequency asymptotic formula can be
derived for dispersion relations of Rayleigh waves that propagate in various directions
along the free surface of a vertically-inhomogeneous, prestressed, and generally anisotro-
pic half-space. The procedure is based on three assumptions, namely: (i) the incremental
elasticity tensor of the material half-space can be written as the sum of a homogeneous
isotropic part CIso and a depth-dependent perturbative part A; (ii) at the free surface both
the initial stress and A are small as compared with CIso; (iii) the mass density, the initial
stress, and A are smooth functions of depth from the free surface. We derive formulas
and Lyapunov-type equations that can iteratively deliver each term of an asymptotic
expansion of the surface impedance matrix, which leads to the aforementioned
high-frequency asymptotic formula for Rayleigh-wave dispersion. As illustration we
consider a thick-plate sample of AA 7075-T651 aluminum alloy, which has one face treated
by low plasticity burnishing that induced a (depth-dependent) prestress at and
immediately beneath the treated surface. We model the sample as a prestressed,
weakly-textured orthorhombic aggregate of cubic crystallites and work out explicitly, up
to the third order, the dispersion relations that pertain to Rayleigh waves propagating in
several directions along the treated face of the sample.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Recently Man, Nakamura, Tanuma, and Wang (2015) developed a general procedure, under the framework of linear elas-
ticity with initial stress (Biot, 1965; Hoger, 1986; Man & Carlson, 1994; Man & Lu, 1987), for obtaining a high-frequency
asymptotic formula for the dispersion of Rayleigh waves propagating in a vertically-inhomogeneous, prestressed and aniso-
tropic medium. That work was meant to serve as the mathematical foundation for a nondestructive measurement technique
to monitor the retention of protective surface and subsurface compressive stresses which are put in metal parts (e.g., critical
components of aircraft engines) by surface treatments for fatigue-life enhancement. The theory in Man et al. (2015) does not
consider the effects of surface roughness on Rayleigh-wave dispersion; it covers only surface treatments (e.g., low plasticity
burnishing (LPB), which leaves a mirror-smooth surface finish) where such effects can be ignored. On the other hand, that
theory is developed with the constitutive equation in linear elasticity with initial stress put in its most general form, which
makes derivation of explicit dispersion relations difficult.
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Here we adapt the general procedure in Man et al. (2015) to the case where the incremental elasticity tensor L can be
written as the sum of an isotropic part CIso and a perturbative part A. Under a Cartesian coordinate system where the mate-

rial medium occupies the half-space x3 6 0, the perturbative part Að�Þ, the initial stress T
�
ð�Þ, and the mass density qð�Þ are

assumed to be smooth functions of x3. Moreover, at the free surface x3 ¼ 0 of the material medium Að0Þ and T
�
ð0Þ are

assumed to be sufficiently small as compared with CIso that, for all expressions and formulas which depend on Að0Þ and

T
�
ð0Þ, it suffices to keep only those terms linear in the components of these tensors. Under this setting, after outlining some

preliminaries in Section 2, we derive in Sections 3–5 specific formulas with which the procedure presented in Man et al.
(2015) can be implemented to solve the direct problem of deriving high-frequency asymptotic formulas for dispersion rela-
tions that pertain to Rayleigh waves with various propagation directions. Once dispersion curves can be generated when req-
uisite data on material and stress are given, the inverse problem of inferring stress retention from Rayleigh-wave dispersion
can be attacked by an iterative approach in further studies.

In Section 6, we present an illustrative example where we derive Rayleigh-wave dispersion relations for a thick-plate
sample of an AA 7075-T651 aluminum alloy that carries a prestress induced by prior LPB-treatment. The sample is modeled
as a weakly-textured orthorhombic aggregate of cubic crystallites. The prestress in the sample was ascertained by destruc-
tive means (X-ray diffraction and hole-drilling), and so were the relevant texture coefficients (X-ray diffraction). To shed
light on how crystallographic texture would affect the dispersion relations, we prescribe two other textures to the sample
and repeat the calculations with the prestress and material parameters unchanged.

2. Preliminaries

In a Cartesian coordinate system let ðx1; x2; x3Þ be the Cartesian coordinates of place x, and let u ¼ uðxÞ ¼ ðu1;u2;u3Þ be the
displacement at x pertaining to the superimposed small elastic motion. We work in the theoretical context of linear elasticity
with initial stress, under which the constitutive equation can be put in the form (cf. Man & Carlson (1994), Man & Lu (1987))
S ¼ T
�
þH T

�
þL½E�; ð1Þ
here S ¼ Sij
� �

is the first Piola–Kirchhoff stress, T
�
¼ ðT

�
ijÞ the initial stress, H ¼ @ui=@xj

� �
the displacement gradient pertaining

to the superimposed small elastic motion, and E ¼ ðH þHTÞ=2 the corresponding infinitesimal strain, where the superscript T
denotes transposition; L is the incremental elasticity tensor which, when regarded as a fourth-order tensor on symmetric
tensors, has its components Lijkl ði; j; k; l ¼ 1;2;3Þ satisfying the major and minor symmetries.

We choose the Cartesian coordinate system so that the material half-space occupies the region x3 6 0 whereas the 1- and

2-axes are chosen arbitrarily. In this paper we assume that the initial stress T
�
¼ T
�
ðx3Þ, the incremental elasticity tensor

L ¼ Lðx3Þ, and the mass density q ¼ qðx3Þ are smooth functions of the coordinate x3 ðx3 6 0Þ. Here and hereafter we use
the term ‘‘smooth function’’ to denote an infinitely differentiable function all of whose derivatives are bounded and contin-

uous. We assume that the initial stress T
�

satisfies the equation of equilibrium div T
�
¼ 0, and that the surface x3 ¼ 0 of the

half-space is free of traction, which implies that the components T
�

i3ðx3Þ ði ¼ 1;2;3Þ of T
�

vanish at the surface x3 ¼ 0. We call
�x3 P 0 the depth of place x beneath the free surface x3 ¼ 0.

In what follows we suppose that L can be written as a sum of two terms: a principal part CIso which is homogeneous and
isotropic, and a perturbative part A ¼ Aðx3Þwhich is a smooth function of x3 ðx3 6 0Þ and is generally anisotropic. Then L can
be expressed as a fourth-order tensor on symmetric tensors E in the form
L½E� ¼ CIso½E� þA½E� ¼ kðtrEÞIþ 2lE þA½E�; ð2Þ
where I is the identity matrix, k and l are the Lamé constants that pertain to CIso, and A can be written under the Voigt nota-
tion as a 6� 6 symmetric matrix arsðx3Þð Þ with its components ars being smooth functions of x3 ðx3 6 0Þ. In the present study
we adopt the following basic assumption:

(⁄) At the free surface x3 ¼ 0, the perturbative part A of L and the initial stress T
�

are sufficiently small as compared with

the isotropic part CIso of L (i.e., kT
�
ð0Þk � kCIsok; kAð0Þk � kCIsok, where k � k denotes the Euclidean norm) that for all

expressions and formulas which depend on Að0Þ and T
�
ð0Þ it suffices to keep only those terms linear in the components

of these tensors.

Throughout this paper, we do not put any condition on the x3-derivatives of Aðx3Þ and of T
�
ðx3Þ at x3 ¼ 0.

Substituting the componentwise expression of (1) into the equations of motion with zero body force, we obtain elastic
wave equations of the form
q
@2

@t2 ui ¼
X3

j;k;l¼1

@

@xj
Bijkl

@uk

@xl

� �
; i ¼ 1;2;3; ð3Þ
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where t denotes the time,
1 Not
exampl
Bijkl ¼ Bijklðx3Þ ¼ dikT
�

jlðx3Þ þ Lijklðx3Þ ð4Þ
are the effective elastic coefficients, and dik is the Kronecker delta.
We consider Rayleigh waves propagating in a given direction along the traction-free surface of the aforementioned

vertically-inhomogeneous, anisotropic and prestressed half-space x3 6 0. These waves are described as a surface-wave
solution to (3) in x3 6 0 which is time-harmonic, has the form
u ¼ ðu1;u2;u3Þ ¼ e�i k ðx1 g1þx2 g2�v tÞ aðx;g1;g2; v; kÞ; ð5Þ
and satisfies the traction-free boundary condition
snðuÞjx3¼0 ¼
X3

r;s¼1

Bp3rs
@ur

@xs

 !
p#1;2;3

������
x3¼0

¼ 0: ð6Þ
Here i ¼
ffiffiffiffiffiffiffi
�1
p

; k is the wave number, g ¼ ðg1;g2;0Þ is the direction of wave propagation on the surface, v is the phase velocity
in the subsonic range to be determined, and aðx;g1;g2;v ; kÞ is the complex-valued polarization vector which decays
exponentially as x3�!�1.

Under the assumption on existence of Rayleigh waves Man et al. (2015) recently derived a high-frequency asymptotic
formula
vR ¼ vRðkÞ ¼ v0 þ v1 k�1 þ v2 k�2 þ v3 k�3 þ � � � ð7Þ
which, for a large wave number k, expresses the phase velocity vR of the Rayleigh waves in question in terms of

Lðx3Þ;T
�
ðx3Þ;qðx3Þ at x3 ¼ 0 and their first and higher-order x3-derivatives at x3 ¼ 0. They developed a procedure which

can deliver an expression for each term v i ði ¼ 0;1;2; . . .Þ. The asymptotic formula for vR thus gives a characterization of
the frequency-dependence of the Rayleigh-wave velocity, i.e., the dispersion of Rayleigh waves, as caused by the vertical
inhomogeneity of the medium.

The surface impedance matrix ZðvÞ ¼ Zðv ;g; kÞ is a 3� 3 matrix that expresses a linear relationship between the displace-
ments at the surface on which surface waves propagate with phase velocity v and the surface tractions needed to sustain
them;
snðuÞjx3¼0 ¼ ZðvÞ ðujx3¼0Þ; ð8Þ
where u is the solution (5). By Section 5 of Man et al. (2015), ZðvÞ admits an asymptotic expansion
ZðvÞ ¼ k Z0ðvÞ þ Z1ðvÞ þ k�1 Z2ðvÞ þ k�2 Z3ðvÞ þ � � � ; ð9Þ
here kZ0ðvÞ is nothing but the surface impedance matrix1 of the comparative homogeneous elastic half-space which has its

incremental elasticity tensor, mass density, and initial stress equal to Lð0Þ;qð0Þ, and T
�
ð0Þ, respectively. It is proved

in Man et al. (2015) that each ZnðvÞ ðn ¼ 0;1;2; . . .Þ is Hermitian, i.e., ZnðvÞ ¼ ZnðvÞT , where the overbar denotes complex
conjugation.

The surface impedance matrix plays a crucial role on the procedure which delivers each term of the asymptotic expansion
(7). It follows from (6) and (8) that the matrix ZðvÞ has a non-trivial null space in a three-dimensional complex linear space at
the phase velocity of the Rayleigh waves vR. This leads us to the asymptotic representation of a secular equation for vR
det Z0ðvÞ þ Z1ðvÞk�1 þ Z2ðvÞk�2 þ Z3ðvÞk�3 þ � � �
h i

¼ 0; ð10Þ
from which the high-frequency asymptotic formula (7) can be derived by a simple routine through the implicit function the-
orem (cf. Section 6 of Man et al. (2015)).

In this paper, under the assumption (⁄) we develop a perturbation method for determining each term v i ði ¼ 0;1;2; . . .Þ in
(7). Henceforth, without loss of generality we consider Rayleigh waves which propagate along the surface of the prestressed
half-space x3 6 0 in the direction of the (arbitrarily-chosen) 2-axis (g ¼ ð0;1;0Þ).

3. Surface impedance matrix of weakly-anisotropic homogeneous elastic half-space

In what follows, by the comparative homogeneous elastic half-space x3 6 0 we mean that which has the incremental elas-

ticity tensor L, mass density q, and initial stress T
�

given by
e that in the literature on the Stroh formalism for homogeneous elastic media it is Z0ðvÞwhich is usually called the ‘‘surface impedance matrix’’; see, for
e, Lothe and Barnett (1976), Chapter 7 of Chadwick and Smith (1977), Chapter 12 of Ting (1996) and Definition 4.3 of Tanuma, Man, and Du (2013).
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L ¼ Lð0Þ ¼ CIso þAð0Þ; ð11Þ
q ¼ qð0Þ, and T
�
¼ T
�
ð0Þ, respectively. The constitutive equation in this homogeneous half-space is then
S ¼ T
�
ð0Þ þ H T

�
ð0Þ þ CIso½E� þAð0Þ½E�:
We recall that the components T
�

i3ðx3Þ ði ¼ 1;2;3Þ of T
�
ðx3Þ vanish at the traction-free surface x3 ¼ 0.

In this section we give a formula for Z0ðvÞ which appears as the dominant term in the asymptotic expansion (9), i.e., a
formula for the surface impedance matrix that pertains to surface waves which propagate in the direction of the 2-axis along
the surface of the comparative homogeneous elastic half-space x3 6 0. Under assumption (⁄), we are concerned only with the

terms in Z0ðvÞ up to those linear in T
�
ð0Þ and Að0Þ, which leads us to write
Z0ðvÞ � ZIso
0 ðvÞ þ ZPtb

0 ðvÞ: ð12Þ
Here and hereafter we use the notation � to indicate that we are retaining terms up to those linear in Að0Þ and T
�
ð0Þ and that

we are neglecting the higher order terms. ZIso
0 ðvÞ is of zeroth order in T

�
ð0Þ and Að0Þ, whereas ZPtb

0 ðvÞ is of first order in T
�
ð0Þ

and Að0Þ. Note that kZIso
0 ðvÞ is the surface impedance matrix pertaining to a homogeneous isotropic elastic half-space with

constitutive equation S ¼ CIso½E� and with density q ¼ qð0Þ.
The Hermitian matrix ZIso

0 ðvÞ has a well-known formula (cf. for example, Section 12.10 of Ting (1996)), which is given by

Proposition 3.1.
ZIso
0 ðvÞ ¼ ZIso

0 ðvÞT ¼
s11 0 0
0 s22 �i s23

0 i s23 s33

0B@
1CA; ð13Þ
where
s11 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðl� VÞ

p
; s22 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðkþ 2l� VÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðkþ 2lÞ

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl� VÞðkþ 2l� VÞ

p� �
kþ 3l� V

;

s33 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkþ 2lÞðl� VÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðkþ 2lÞ

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl� VÞðkþ 2l� VÞ

p� �
kþ 3l� V

;

s23 ¼
1

kþ 3l� V
lðkþ 4l� 2VÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðkþ 2lÞðl� VÞðkþ 2l� VÞ

p� 	
; V ¼ qð0Þv2; i ¼

ffiffiffiffiffiffiffi
�1
p

and k and l are the Lamé constants that pertain to Ciso.
Under assumption (⁄), we apply a perturbation argument to the integral representation of Z0ðvÞ in the subsonic range

(cf. Lothe & Barnett (1976) and Sections 4.D and 7.D of Chadwick & Smith (1977))
Z0ðvÞ ¼ S�1
2 þ iS�1

2 S1;
where
S1 ¼
1

2p

Z p

�p
�T0ð/Þ�1R0ð/ÞT d/; S2 ¼

1
2p

Z p

�p
T0ð/Þ�1 d/;

R0ð/Þ ¼
X3

j;l¼2

Bijklð0Þðm cos /þ n sin /Þjð�m sin /þ n cos /Þl

 !
þ qð0Þv2 cos / sin / I;

T0ð/Þ ¼
X3

j;l¼2

Bijklð0Þð�m sin /þ n cos /Þjð�m sin /þ n cos /Þl

 !
� qð0Þv2 sin2 / I
and m ¼ ð0;1;0Þ is the propagation direction of the surface waves in question and n ¼ ð0; 0;1Þ is the unit outward normal of

the boundary x3 ¼ 0 of the material half-space, to obtain an explicit formula for ZPtb
0 ðvÞ (cf. the methods in Sections 6 and 7 of

Tanuma & Man (2002), Sections 6 and 7 of Tanuma & Man (2008), and Section 4 of Tanuma et al. (2013)):

Proposition 3.2.
ZPtb
0 ðvÞ¼ZPtb

0 ðvÞT ¼
‘11ða55;a66;T

�
22Þ ‘R

12ða26;a36;a45Þ þ i‘ I
12ða25;a35;a46Þ ‘R

13ða25;a35;a46Þ þ i‘ I
13ða26;a36;a45Þ

	 ‘22ða22;a23;a33;a44;T
�

22Þ ‘R
23ða24;a34Þ þ i‘ I

23ða22;a23;a33;a44;T
�

22Þ

	 	 ‘33ða22;a23;a33;a44;T
�

22Þ

26664
37775;
ð14Þ
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where the diagonal components ‘ii ði ¼ 1;2;3Þ and ‘ R
ij ; ‘

I
ij ðði; jÞ ¼ ð1;2Þ; ð1;3Þ; ð2;3ÞÞ in the off-diagonal components are

real-valued linear functions of their arguments whose coefficients are given explicitly in terms of the Lamé constants k;l and
V ¼ qð0Þv2, and the label ‘‘	’’ in the ðj; iÞ component of the matrix denotes the complex conjugate of the ði; jÞ component of the

matrix ðði; jÞ ¼ ð1;2Þ; ð1;3Þ; ð2;3ÞÞ. All the components of T
�

and A in the preceding formula denote their values at x3 ¼ 0.
The formulas for the aforementioned linear functions are given in Appendix A.
Remark 3.3. For a weakly-anisotropic homogeneous elastic half-space, Song and Fu (2007) obtained a general formula for
the first-order perturbation of the surface impedance matrix at the Rayleigh-wave velocity in the process of deriving a
first-order correction to the Rayleigh-wave velocity. The formula ((2.6) therein) is written in an integral form over a
semi-infinite interval whose integrand involves the eigenvalues and eigenvectors of Stroh’s eigenvalue problem for the base
material. We observe that formula (14) together with those in Appendix A can be derived from Song and Fu’s formula (2.6)
by keeping the velocity in their formula free and not fixed at the Rayleigh-wave velocity.
4. Lower-order terms of the asymptotic expansion of surface impedance matrix

Now we turn to study the surface impedance matrix ZðvÞ that pertains to surface waves which propagate in the direction
of the 2-axis along the surface of the vertically-inhomogeneous, anisotropic and prestressed elastic half-space x3 6 0. Recall
that the constitutive equation is expressed by (1), where the incremental elasticity tensor has the form (2), and the mass
density is given by qðx3Þ. Let Q, R and T be 3� 3 real matrices given by
Q ¼ Q ðx3;vÞ ¼ Bi2k2ðx3Þ � qðx3Þv2dik
� �

; R ¼ Rðx3Þ ¼ Bi2k3ðx3Þð Þ; T ¼ Tðx3Þ ¼ Bi3k3ðx3Þð Þ; ð15Þ
where Bijkl ¼ Bijklðx3Þ are the effective elastic coefficients (4). Let Q n;Rn;Tn and Sn ðn ¼ 0;1;2; . . .Þ be the coefficients in the

Taylor expansions of Q, R, T and T�1 at x3 ¼ 0, respectively.
According to the arguments in Sections 3 and 5 of Man et al. (2015), each lower-order term in (9), i.e., each of the 3� 3

matrices ZnðvÞ ðn ¼ 1;2;3; . . .Þ, is obtained by solving some systems of Lyapunov-type equations. From Eqs. (58) and (101) of
Man et al. (2015) we get
ZnðvÞ ¼ iGð�nÞ
0 ðn ¼ 1;2;3; . . .Þ; ð16Þ
where the 3� 3 matrix Gð�nÞ
0 is the last term of a sequence of 3� 3 matrices Gð�nÞ

n ; Gð�nÞ
n�1 ; . . . ; Gð�nÞ

1 ; Gð�nÞ
0

n o
whose elements

are obtained inductively by solving Lyapunov-type equations; see (79), the first equation of (80), (81), the first equation of
(82), (83) and (87) in Man et al. (2015).

In what follows under assumption (⁄) we shall apply a perturbation argument to the aforementioned equations in Man

et al. (2015) to derive equations for the matrices which approximate ZnðvÞ ðn ¼ 1;2;3; . . .Þ to within terms linear in T
�
ð0Þ and

Að0Þ. For
K0 ¼ T�1
0 RT

0 � iT�1
0 Z0; ð17Þ
which appears in all the left hand sides of the aforementioned equations in Man et al. (2015), we can write
K0 � K Iso
0 þ KPtb

0 ; ð18Þ
where K Iso
0 is of zeroth order in T

�
ð0Þ and Að0Þ, and KPtb

0 is of first order in T
�
ð0Þ and Að0Þ. It then follows from (13) that
K Iso
0 ¼

�ik11 0 0
0 �ik22 k32

0 k23 �ik33

0B@
1CA;
where
k11 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
l� V

l

s
; k22 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kþ 2l� V

l

s
H; k33 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l� V
kþ 2l

s
H; k23 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kþ 2l� V

kþ 2l

s
J; k32 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
l� V

l

s
J;

H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðkþ 2lÞ

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl� VÞðkþ 2l� VÞ

p
kþ 3l� V

; J ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkþ 2lÞðkþ 2l� VÞ

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðl� VÞ

p
kþ 3l� V

:

It also follows that
KPtb
0 ¼

1=l 0 0
0 1=l 0
0 0 1=ðkþ 2lÞ

0B@
1CA �TPtb

0 K Iso
0 þ RPtb

0

� 	T
� iZPtb

0

� �
;



68 K. Tanuma et al. / International Journal of Engineering Science 92 (2015) 63–82
where RPtb
0 and TPtb

0 are equal to the matrices Rn and Tn in (19) below with n ¼ 0; T
�

23ð0Þ ¼ T
�

33ð0Þ ¼ 0, respectively.

Since ZnðvÞ ðn ¼ 1;2;3; . . .Þ are related to Gð�nÞ
0 by (16), it is sufficient to give equations which determine

Gð�nÞ
l ðl ¼ 0;1;2; . . . ;nÞ to within terms linear in Að0Þ and T

�
ð0Þ. Hereafter we use the symbol ‘‘ gGð�nÞ

l ’’ to denote a matrix

which approximates Gð�nÞ
l up to terms linear in Að0Þ and T

�
ð0Þ ðn ¼ 1;2;3; . . . ; l ¼ 0;1;2; . . . ;nÞ.

From (15) it follows that for n ¼ 1;2;3; . . .,
Q n ¼
1
n !

@n

@xn
3
ða66 þ T

�
22 � qv2Þ

����
x3¼0

@n

@xn
3

a26

���
x3¼0

@n

@xn
3

a46

���
x3¼0

@n

@xn
3

a26

���
x3¼0

@n

@xn
3
ða22 þ T

�
22 � qv2Þ

����
x3¼0

@n

@xn
3

a24

���
x3¼0

@n

@xn
3

a46

���
x3¼0

@n

@xn
3

a24

���
x3¼0

@n

@xn
3
ða44 þ T

�
22 � qv2Þ

����
x3¼0

0BBBBBBBB@

1CCCCCCCCA
;

Rn ¼
1
n !

@n

@xn
3
ða56 þ T

�
23Þ
����

x3¼0

@n

@xn
3

a46

���
x3¼0

@n

@xn
3

a36

���
x3¼0

@n

@xn
3

a25

���
x3¼0

@n

@xn
3
ða24 þ T

�
23Þ
����
x3¼0

@n

@xn
3

a23

���
x3¼0

@n

@xn
3

a45

���
x3¼0

@n

@xn
3

a44

���
x3¼0

@n

@xn
3
ða34 þ T

�
23Þ
����
x3¼0

0BBBBBBBB@

1CCCCCCCCA
;

Tn ¼
1
n !

@n

@xn
3
ða55 þ T

�
33Þ
����
x3¼0

@n

@xn
3

a45

���
x3¼0

@n

@xn
3

a35

���
x3¼0

@n

@xn
3

a45

���
x3¼0

@n

@xn
3
ða44 þ T

�
33Þ
����

x3¼0

@n

@xn
3

a34

���
x3¼0

@n

@xn
3

a35

���
x3¼0

@n

@xn
3

a34

���
x3¼0

@n

@xn
3
ða33 þ T

�
33Þ
����
x3¼0

0BBBBBBBB@

1CCCCCCCCA
:

ð19Þ
Putting m ¼ 1 in (79) of Man et al. (2015) and taking account of (18) and �T0S1T0 ¼ T1, we observe that gGð�1Þ
1 is obtained as

the solution to
K Iso
0 þ KPtb

0

� 		 gGð�1Þ
1 � gGð�1Þ

1 K Iso
0 þ KPtb

0

� 	
¼ Q 1 � R1 þ RT

1

� 	
K Iso

0 þ KPtb
0

� 	
þ K Iso

0

� 		
T1K Iso

0

þ 2H K Iso
0

� 		
T1KPtb

0

� 	
; ð20Þ
where M	 denotes the adjoint of the matrix M (i.e., M	 ¼MT) and HðMÞ denotes the Hermitian part of M, i.e.,
HðMÞ ¼ 1

2 MþM	ð Þ. Eq. (20) is of Lyapunov type. All the eigenvalues of K0 (17) have negative imaginary parts (cf.

Proposition 1 in Section 3 of Man et al. (2015)), which implies under assumption (⁄) that (20) can be solved for gGð�1Þ
1 uniquely

in terms of the right-hand side (cf. Section 8.3 of Gantmacher (1960) or Chapter 12 of Bellman (1997)).

Once we have obtained gGð�1Þ
1 , putting m ¼ 1 in (81) and in the first equation of (80) in Man et al. (2015), we see that gGð�1Þ

0

is obtained as the solution to
K Iso
0 þ KPtb

0

� 		 gGð�1Þ
0 � gGð�1Þ

0 K Iso
0 þ KPtb

0

� 	
¼ i RT

1 �
gGð�1Þ

1

� �
: ð21Þ
Then, Z1 � i gGð�1Þ
0 .

For m ¼ 2;3;4; . . ., suppose that we have obtained the sequences of matrices
gGð�1Þ
1 ;

gGð�1Þ
0


 �
;

gGð�2Þ
2 ;

gGð�2Þ
1 ;

gGð�2Þ
0


 �
; . . . ;

gGð�ðm�1ÞÞ
m�1 ;

gGð�ðm�1ÞÞ
m�2 ; . . . ;

gGð�ðm�1ÞÞ
1 ;

gGð�ðm�1ÞÞ
0


 �
: ð22Þ
Then the sequence f gGð�mÞ
m ;

gGð�mÞ
m�1 ; . . . ;

gGð�mÞ
1 ;

gGð�mÞ
0 g is determined as follows: Eqs. (79) and (87) in Man et al. (2015), com-

bined with (18), imply that gGð�mÞ
m can be obtained as the solution to
K Iso
0 þ KPtb

0

� 		 gGð�mÞ
m � gGð�mÞ

m K Iso
0 þ KPtb

0

� 	
¼ Q m � Rm þ RT

m

� 	
K Iso

0 þ KPtb
0

� 	
� K Iso

0 þ KPtb
0

� 		 fS0

� 	�1 fSm
fS0

� 	�1
K Iso

0 þ KPtb
0

� 	
�gFm

1 ; ð23Þ
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where
fS0 ¼ TIso
0

� 	�1
� TIso

0

� 	�1
TPtb

0 TIso
0

� 	�1
; fSn ¼

Xn

k¼1

ð�1Þk
X

l1þl2þ���þlk¼n
16l1 ;l2 ;...;lk

fS0 Tl1

� 	 fS0 Tl2

� 	
. . . fS0 Tlk

� 	fS0 ðn¼1;2;3; . . .Þ
approximate S0 ¼ T0ð Þ�1 and Sn ðn ¼ 1;2;3; . . .Þ up to terms linear in T
�
ð0Þ and Að0Þ, respectively,
gFm
1 ¼

Xm�1

a¼1

gGð�aÞ
a

� �	 fS0
gG �ðm�aÞð Þ

m�a þ 2H
Xm�1

n¼1

gGð�ðm�nÞÞ
m�n

� �	 fSn
fS0

� 	�1
K Iso

0 þ KPtb
0

� 	 !
þ
Xm�2

n¼1

Xm�n�1

a¼1

gGð�aÞ
a

� �	 fSn
gG �ðm�a�nÞð Þ

m�a�n ;
and the last term on the right hand side of the preceding equation drops out when m ¼ 2. Note that gFm
1 is determined from

the entries in (22). Hence we can solve (23) for gGð�mÞ
m uniquely.

Once we have obtained gGð�mÞ
m , from (81) and the first equation of (80) in Man et al. (2015) we see that gGð�mÞ

m�1 can be
obtained as the solution to
K Iso
0 þ KPtb

0

� 		 gGð�mÞ
m�1 �

gGð�mÞ
m�1 K Iso

0 þ KPtb
0

� 	
¼ �gFm

2 þ imðRT
m �

gGð�mÞ
m Þ; ð24Þ
where
gFm
2 ¼ 2H gGð�1Þ

0

� �	 fS0
gGð�ðm�1ÞÞ

m�1 þ
Xm�1

n¼1

gGð�ðm�nÞÞ
m�1�n

� �	 fSn
fS0

� 	�1
K Iso

0 þ KPtb
0

� 	 !
þ
Xm�2

a¼1

Xaþ1

j¼a

gGð�jÞ
a

� �	fS0
gG �ðm�jÞð Þ

m�1�a

þ 2H
Xm�2

n¼1

gGð�ðm�1�nÞÞ
m�1�n

� �	 fSn
gGð�1Þ

0

 !
þ
Xm�3

n¼1

Xm�2�n

a¼1

Xaþ1

j¼a

gGð�jÞ
a

� �	 fSn
gG �ðm�j�nÞð Þ

m�1�a�n ;
and the second and the third terms on the right hand side of the preceding equation drop out when m ¼ 2 and the last term

disappears when m ¼ 2 and m ¼ 3. Again, we see that gFm
2 is determined from the entries in (22). Hence we can solve (24) forgGð�mÞ

m�1 uniquely.

For l ¼ 0;1; . . . ;m� 2, suppose that we already know the matrix gGð�mÞ
lþ1 . It then follows from (83) and the first equation of

(82) in Man et al. (2015) that gGð�mÞ
l can be obtained as the solution to
K Iso
0 þ KPtb

0

� 		 gGð�mÞ
l � gGð�mÞ

l K Iso
0 þ KPtb

0

� 	
¼ �gFm

3þl � i ðlþ 1Þ gGð�mÞ
lþ1 ; ð25Þ
where
gFm
3þl ¼

Xm�1

j¼1

gGð�jÞ
0

� �	 fS0
gGð�ðm�jÞÞ

0 for l ¼ 0

2H
Xm�l

j¼1

gGð�jÞ
0

� �	 fS0
gGð�ðm�jÞÞ

l þ
Xl

n¼1

gGð�ðm�nÞÞ
l�n

� �	 fSn
fS0

� 	�1
K Iso

0 þ KPtb
0

� 	 !

þ
Xm�l�1

j¼1

gGð�jÞ
0

� �	 eSl
gGð�ðm�j�lÞÞ

0 þ
Xl�1

a¼1

Xaþm�l

j¼a

gGð�jÞ
a

� �	 fS0
gG �ðm�jÞð Þ

l�a

þ2H
Xl�1

n¼1

Xm�n�1

j¼l�n

gGð�jÞ
l�n

� �	 fSn
gGð�ðm�j�nÞÞ

0

 !
þ
Xl�2

n¼1

Xl�n�1

a¼1

Xaþm�l

j¼a

gGð�jÞ
a

� �	 fSn
gG �ðm�j�nÞð Þ

l�a�n for l P 1

8>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>:

;

and the third and the fourth terms on the right hand side of the preceding equation for l P 1 are not there when l ¼ 1 and the

last term drops out when l ¼ 1 and l ¼ 2. We see that gFm
3þl is determined from the entries in (22). Hence we can solve (25) for

Gð�mÞ
l uniquely. Then Zm � i gGð�mÞ

0 .
Finally, we comment on how to solve (20), (21), (23)–(25). These equations can all be expressed in the form of a

Lyapunov-type equation for G, namely:
L	G � G L ¼ B; ð26Þ
where L ¼ K Iso
0 þ KPtb

0 and B denotes the right hand sides of the respective equations. The three-dimensional matrix equation
(26) can be recast into a nine-dimensional linear system. In fact, under the component-wise expressions of the 3� 3 matrices
L ¼ lij
� �

; G ¼ gij

� �
; B ¼ bij

� �
;
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(26) is equivalent to
Lg ¼ b; ð27Þ
where L is the 9� 9 matrix given by
l11 � l11 �l21 �l31 l21 l31 0 0 0 0

�l12 l11 � l22 �l32 0 0 l21 0 l31 0

�l13 �l23 l11 � l33 0 0 0 l21 0 l31

l12 0 0 l22 � l11 l32 �l21 �l31 0 0

l13 0 0 l23 l33 � l11 0 0 �l21 �l31

0 l12 0 �l12 0 l22 � l22 �l32 l32 0

0 0 l12 �l13 0 �l23 l22 � l33 0 l32

0 l13 0 0 �l12 l23 0 l33 � l22 �l32

0 0 l13 0 �l13 0 l23 �l23 l33 � l33

0BBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCA

;

and g and b are nine-dimensional column vectors defined by
g ¼ g11 g12 g13 g21 g31 g22 g23 g32 g33ð ÞT ; b ¼ b11 b12 b13 b21 b31 b22 b23 b32 b33ð ÞT :
Later in the numerical implementations we shall solve (20) and (21), and the series of (23)–(25) for m ¼ 2 and m ¼ 3 by
appealing to the reduction of them to a nine-dimensional linear system of the form (27) in order to compute the first several
terms of asymptotic expansion (9).

Remark 4.1. For a vertically-inhomogeneous anisotropic elastic half-space, several papers have been published on the
surface impedance matrix that pertains to surface waves propagating along its surface (cf. Remarks 1 and 2 in Section 5 of
Man et al. (2015)). Recently, using the properties of this matrix, Katchalov (2012) proved the existence and the uniqueness of
the Rayleigh wave for weakly anisotropic media.
5. Asymptotic formula for phase velocity of Rayleigh waves

We apply the implicit function theorem to the asymptotic representation (10) of the secular equation to obtain the
asymptotic formula (7) of vR for a large wave number k. This procedure is a simple routine and is outlined in Section 6 of
Man et al. (2015). Here we note that the first term of (7), namely v0, solves det Z0ðvÞ ¼ 0, i.e., v0 is the phase velocity of
Rayleigh waves propagating along the surface of the comparative homogeneous elastic half-space x3 6 0 whose incremental

elasticity tensor has the form (11), whose initial stress T
�
ð0Þ has the components T

�
i3 ¼ 0 for i ¼ 1;2;3, and whose density is

equal to qð0Þ. By (12), v0 is written as
v0 � v Iso
0 þ vPtb

0 ; ð28Þ
where v Iso
0 and vPtb

0 are of zeroth and first order in T
�
ð0Þ and Að0Þ, respectively. The term v Iso

0 is the velocity of Rayleigh waves

in the isotropic medium defined by L ¼ CIso;Að0Þ ¼ 0, and T
�
ð0Þ ¼ 0. A formula for vPtb

0 , with each coefficient of T
�
ð0Þ and Að0Þ

written explicitly in terms of k and l of CIso, is given in formula (12) of Tanuma and Man (2006).
To obtain v i ði ¼ 1;2;3; . . .Þ in the lower-order terms of (7), we can use the procedure in Section 6 of Man et al. (2015)

with v0 there replaced by v Iso
0 þ vPtb

0 .

Finally, let us comment on how each component of T
�

and A under their respective most general form would affect each
term of v i ði ¼ 1;2;3; . . .Þ. We can deduce the following two assertions from (10), Proposition 3.2, (19) and Lyapunov-type
equations (20), (21) and (23)–(25). Recall that the Rayleigh waves in question propagate in the direction of the 2-axis along
the surface of the vertically-inhomogeneous, prestressed, anisotropic elastic half-space x3 6 0, where the constitutive equa-
tion is expressed by (1), the incremental elasticity tensor has the form (2), and the mass density is given by qðx3Þ.

1. To obtain the terms in (7) up to those of vn, it suffices to know k;l; T
�
ð0Þ;Að0Þ;qð0Þ and the x3-derivatives of

Aðx3Þ;T
�
ðx3Þ;qðx3Þ at x3 ¼ 0 up to those of order n.

2. None of the components of Aðx3Þwhich have the subscript ‘‘1’’ in the Voigt notation and none of the components of T
�
ðx3Þ

which have the subscript ‘‘1’’ can affect the dispersion of Rayleigh waves.
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6. An illustrative example

Among engineering material systems covered by the theory developed in this paper are metal structural parts
surface-treated by low plasticity burnishing (LPB), which leaves a mirror-smooth surface finish and creates a thin layer of
compressive residual stress that improves the fatigue life of the parts so treated. The situation at issue is similar to those
of many applications that involve elastic waves in structural metals (see Man (1999) and the references therein), where
the perturbative part A in the splitting (2) of the incremental elasticity tensor L is originated from the presence of crystal-
lographic texture and of the prestress. Moreover, the shifts in phase velocities of elastic waves caused by texture and initial
stress (with the latter bounded by the yield surface) are typically within 2% of their values for the corresponding isotropic
medium with L ¼ CIso, which suggests that linearization assumption (⁄) would be adequate. As we shall illustrate in Table 1
below, the example that we shall study in this section is no different.

One problem of considerable engineering interest concerns the possibility of using Rayleigh waves to monitor the reten-

tion of the protective prestress T
�

during the lifetime of a structural component. We shall study this inverse problem in
another paper. Our solution of the inverse problem, however, is based on what we have done above on the direct problem
to determine dispersion curves for Rayleigh waves propagating in various directions when the material parameters, texture
coefficients, and initial stresses are given. In this section, we illustrate our solution of this direct problem by a concrete
example.

A 10 cm � 10 cm � 2 cm sample was cut from an AA 7075-T651 aluminum plate. One face of the sample was surface trea-
ted with low plasticity burnishing, which introduced in the sample depth-dependent compressive stresses to a depth of
about 1 mm from the treated surface (cf. Moreau & Man (2006) for more details on sample preparation). Henceforth we
fix a spatial coordinate system OXYZ and model the prestressed sample as a half space that occupies the region x3 6 0, while
the 1- and 2-axis are chosen arbitrarily. By the ‘‘depth’’ of a point in the material half-space is meant the value of �x3 (in
mm), where x3 is the 3-coordinate of the given point. We consider only Rayleigh waves propagating in the direction of
the 2-axis. X-ray diffraction measurements indicated that there were three distinguished mutually-orthogonal directions
for material points at the LPB-treated surface of the sample, namely the 3-direction (normal to the free surface), the direction
of LPB-rolling (which apparently was the same as the original rolling direction of the manufacturing process), and the direc-
tion transverse to the two. We define another Cartesian coordinate system OX0Y 0Z0 which has the 10-, 20-, and 30-axis agree
with the aforementioned rolling, transverse, and normal direction (i.e., the 3-direction) of the sample, respectively. We call
OX0Y 0Z0 the material coordinate system, because it is attached to the sample. Let h be the angle of rotation about the 3-axis
that will bring the 2-axis to the 20-axis. Different propagation directions in the sample are obtained by rotating the material
half-space about the 3-axis, i.e., by varying h. Henceforth we call h the propagation direction of the Rayleigh wave (relative to
the 20-direction of the material half-space).

The surface and near-surface crystallographic texture of the sample at the LPB-treated face were measured by X-ray
diffraction up to a depth of 0.225 mm. The texture was found to be essentially constant with depth and was orthorhombic
with respect to the O0X0Y 0Z0 coordinate system. The values of those texture coefficients relevant to this study, namely
W 0

400;W
0
420;W

0
440;W

0
600;W

0
620;W

0
640 and W 0

660, are given in Appendix B. Regrettably, for the 7075-T651 sample, texture mea-
surement was not made at depths that exceed 0.225 mm, as the material within a surface layer of about 1 mm thick would
be relevant to the present study. For the present purpose of working out an illustrative example, we will simply take the
crystallographic texture to be constant at all depths in our model of the sample.

The depth-dependent prestress, assumed to be of the form
T
�
ðx3Þ ¼

T
�

11ðx3Þ T
�

12ðx3Þ 0

T
�

12ðx3Þ T
�

22ðx3Þ 0
0 0 0

0BB@
1CCA ð29Þ
under the OXYZ coordinate system, was measured by X-ray diffraction (and supplemented by information gathered from
hole-drilling) up to a depth of 1.25 mm from the treated surface. Let e1ðx3Þ and e2ðx3Þ be the principal directions of the stress
that are perpendicular to the 3-axis, and r1ðx3Þ and r2ðx3Þ be the corresponding principal stresses. Let fðx3Þ be the angle
between e2ðx3Þ and the 20-axis. Then uðx3Þ ¼ hþ fðx3Þ is the angle of rotation about the 3-axis that will bring the direction

of the 2-axis to e2ðx3Þ; see Fig. 1. It follows that T
�

ijðx3Þ in (29) can be written as
T
�

11 ¼ T
�

m � T
�

d cos 2u; T
�

22 ¼ T
�

m þ T
�

d cos 2u; T
�

12 ¼ �T
�

d sin 2u; ð30Þ
where
T
�

m :¼ r1 þ r2

2
; T

�
d :¼ r2 � r1

2
: ð31Þ
The measured data-points of the principal stresses r1 and r2 are shown in Fig. 2, where adjacent data-points are joined by
straight-line segments. The top (red) curve and the bottom (blue) curve give the principal stresses r1 and r2, respectively. In



Table 1
Zeroth-order velocity v0 (in m/s) for Rayleigh waves with different propagation directions h in sample prestressed half-space with three different textures. For
comparison, v Iso

0 ¼ 2891:4 m/s.

h (degree) 0� 45� 90� 135�

Texture (I) 2882.7 2873.1 2873.2 2877.7
Texture (II) 2867.3 2874.2 2881.4 2878.3
No texture 2876.4 2867.8 2863.8 2872.4

Fig. 1. Spatial coordinate system, material coordinate system, and principal-stress directions.

Fig. 2. Depth profiles of principal stresses r1 (top curve) and r2 (bottom curve).
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Fig. 3. Graph of cubic polynomial that fits the data points of principal stress r1.

Fig. 4. Graph of cubic polynomial that fits the data points of principal stress r2.
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our model we fit the data points with cubic polynomials. The cubic fitting curves for the principal stresses r1 and r2 are
shown in Figs. 3 and 4, respectively. The corresponding equations of the principal stresses are given by
r1ðx3Þ ¼ 1:4387� 103x3
3 þ 3:4090� 103x2

3 þ 1:7981� 103x3 � 2:035� 102; ð32Þ
r2ðx3Þ ¼ 1:1943� 103x3

3 þ 2:7291� 103x2
3 þ 1:1636� 103x3 � 4:125� 102; ð33Þ
where r1;r2 are in MPa and x3 is in mm.
In the stress measurements it was found that fðx3Þ � 10� for 0 P x3 P �0:5 mm. As shown in Fig. 2, r1ðx3Þ � r2ðx3Þ for

x3 6 �0:5 mm. Hence we may take fðx3Þ � 10� for x3 6 �0:5 mm, as fðx3Þ is, to within experimental error, arbitrary there. In
our example, we will simply put fðx3Þ ¼ 10� for all x3 6 0 in our model of the sample. Later in our computations, we shall

have to make use of the components T
�

ijðx3Þ of the prestress under the OXYZ coordinate system. The non-trivial components
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T
�

ijðx3Þ that pertain to (32) and (33) for the principal stresses, fðx3Þ ¼ 10�, and various propagation direction h can be obtained
from (30) and (31), where u ¼ hþ fðx3Þ.

We treat the material points of the prestressed 7075-T651 aluminum sample as weakly-textured orthorhombic aggre-
gates of cubic crystallites and, in our model, adopt what follows as their constitutive equation under the OX0Y 0Z0 material
coordinate system (cf. Man (1999), Tanuma & Man (2002)):
S ¼ T
�
þ HT

�
þ L½E� ¼ T

�
þ HT

�
þ CIso½E� þA½E�

¼ T
�
þ HT

�
þ kðtrEÞIþ 2lE þ aUðW 0

400;W
0
420;W

0
440Þ½E� þ b1ðtrT

�
ÞðtrEÞIþ b2ðtrT

�
ÞE þ b3ððtrEÞT

�
þ trðET

�
ÞIÞ

þ b4ðET
�
þ T
�
EÞ þ

X4

i¼1

biW
ðiÞðW 0

400;W
0
420;W

0
440Þ½T

�
;E� þ aHðW 0

600;W
0
620;W

0
640;W

0
660Þ½T

�
;E�: ð34Þ
Here U is a fourth-order tensor and WðiÞ ði ¼ 1; . . . ;4Þ are sixth-order tensors defined in terms of the texture coefficients
W 0

400;W
0
420;W

0
440, and H a sixth-order tensor defined in terms of W 0

600;W
0
620;W

0
640 and W 0

660. The components of these tensors
in the OXYZ coordinate system are given explicitly in Appendix B, and so are the values of the 12 material parameters
k;l;a; bi ði ¼ 1; . . . ;4Þ; bj ðj ¼ 1; . . . ;4Þ, and a adopted for the 7075-T651 aluminum sample in our example.

Let q0 be the density of the aluminum alloy in question when it is stress free. The presence of vertically-inhomogeneous

residual stress T
�
ðx3Þ will change the density of the material point from q0 to qðx3Þ, which is related to q0 and T

�
ðx3Þ by the

formula
qðx3Þ ¼ q0ð1� trEÞ; where E ¼ ðCIso þ aUÞ�1½T
�
�:
In our example we take q0 ¼ 2:81� 103 kg/m3, which is the (nominal) density of AA7075 alloy as computed from those of its
alloying elements and their concentrations (Aluminum Standards and Data 2000 (2000), pp. 2–14).

In this paper we want to examine also how the texture would affect the dispersion relations. Hence, for comparison pur-
poses, we consider in addition two hypothetical but possible scenarios in the texture of the 7075-T651 sample to yield three
cases as follows:


 The sample has its actual texture, the relevant coefficients of which are given in Appendix B. We call this case Texture (I).

 The texture of the sample has coefficients

W 0
400 ¼ 0:00159;W 0

420 ¼ �0:00368;W 0
440 ¼ 0:00175;W 0

600 ¼ �0:00529;W 0
620 ¼ 0:00348;W 0

640 ¼ �0:00299, and
W 0

660 ¼ 0:00197.

These coefficients are those that pertain to the surface texture of a 6061-T6 aluminum alloy plate (Man, Lu, & Li, 1999). We
refer to this case as Texture (II).

 The 7075-T651 sample has no texture, i.e., W 0

lm0 ¼ 0.

From (7) and (28), the dispersion relation can be written in the lower-order terms of the asymptotic expansion as
vR � v0 þ v1 eþ v2 e2 þ v3 e3 ¼ v Iso
0 þ vPtb

0 þ v1 eþ v2 e2 þ v3 e3; ð35Þ
where e ¼ k�1 and k denotes the wave number. In (35), v0 ¼ v Iso
0 þ vPtb

0 is the zeroth-order term. As shown by Tanuma and
Man (2002), v0 can be estimated by the formula
v0 ¼ v Iso
0 �

1
2qð0Þv Iso

0

� A0 þ A2 cos 2hþ A4 cos 4hþ ðB0 þ B2 cos 2hþ B4 cos 4hÞT
�

mð0Þ
�

þðC0 þ C2 cos 2hþ C4 cos 4hþ C6 cos 6hÞT
�

dð0Þ cos 2ðhþ fð0ÞÞ

þðD2 sin 2hþ D4 sin 4hþ D6 sin 6hÞT
�

dð0Þ sin 2ðhþ fð0ÞÞ
�

; ð36Þ
here v Iso
0 is the phase velocity of Rayleigh waves in the isotropic base material; qð0Þ; T

�
mð0Þ; T

�
dð0Þ, and fð0Þ are the values of

the density q, stress parameters T
�

m; T
�

d, and f at the free surface x3 ¼ 0, respectively. Explicit formulas that relate the param-
eters Ai ði ¼ 0;2;4Þ;Bi ði ¼ 0;2;4Þ;Ci ði ¼ 0;2;4;6Þ, and Di ði ¼ 2;4;6Þ to material parameters and texture coefficients are
given in Tanuma and Man (2002).
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Appealing to (31), and using fð0Þ ¼ 10� and the values of r1ð0Þ and r2ð0Þ given in (32) and (33), respectively, we compute
the velocities v0 of the sample in question for the aforementioned three cases of texture by formula (36) for h ¼ 0�;45�;90�,
and 135�. The results are shown in Table 1.

To compute v i ði ¼ 1;2;3Þ, we start from the following truncated form of the asymptotic expansion (9) of the surface
impedance Z:
Z ¼ ZIso
0 þ ZPtb

0 þ Z1 eþ Z2 e2 þ Z3 e3;
where ZIso
0 is the surface impedance matrix of the homogeneous isotropic base material with L ¼ CIso;A ¼ O;T

�
¼ 0 and

q ¼ qð0Þ; ZPtb
0 is determined by (12), and e ¼ k�1. We set the approximate secular equation as
Rðv ; eÞ ¼ det ZIso
0 þ ZPtb

0 þ Z1 eþ Z2 e2 þ Z3 e3
h i

¼ 0: ð37Þ
By the implicit functions theorem, we obtain from (37) the formulas
v1 ¼ �
N1

D
; v2 ¼ �

N2

2D
; v3 ¼ �

N3

6D
; ð38Þ
where
D¼ @R
@v

����
v¼v0 ;e¼0

; N1 ¼
@R
@e

����
v¼v0 ;e¼0

; N2 ¼
@2R
@e2

�����
v¼v0 ;e¼0

þ2v1
@2R
@e@v

�����
v¼v0 ;e¼0

þ v1ð Þ2
@2R
@v2

�����
v¼v0 ;e¼0

;

N3 ¼
@3R
@e3

�����
v¼v0 ;e¼0

þ3v1
@3R
@e2@v

�����
v¼v0 ;e¼0

þ3 v1ð Þ2
@3R
@e@v2

�����
v¼v0 ;e¼0

þ v1ð Þ3
@3R
@v3

�����
v¼v0 ;e¼0

þ6v2
@2R
@e@v

�����
v¼v0 ;e¼0

þ6v1v2
@2R
@v2

�����
v¼v0 ;e¼0

;

and v0 is estimated by using (36) above.
By (37) and (38) we take the following steps to obtain v1;v2, and v3 in the dispersion relation (35):

Step 1 Determine ZIso
0 and ZPtb

0 by using the well-known formula reproduced in Proposition 3.1 and the formulas given in
Proposition 3.2 and Appendix A, respectively.

Step 2 Determine Z1 by the formula Z1 ¼ i gGð�1Þ
0 , where gGð�1Þ

0 is calculated inductively by solving the Lyapunov-type
equations (20) and (21).

Step 3 Determine Z2 by the formula Z2 ¼ i gGð�2Þ
0 , where gGð�2Þ

0 is obtained inductively by solving Lyapunov-type equations as

follows: Solve for gGð�2Þ
2 and gGð�2Þ

1 from (23) and (24) by setting m ¼ 2, respectively. Then solve for gGð�2Þ
0 from (25) by

setting m ¼ 2 and l ¼ 0.

Step 4 Determine Z3 by the formula Z3 ¼ i gGð�3Þ
0 , where gGð�3Þ

0 is computed inductively by solving Lyapunov-type equations

as follows: First solve for gGð�3Þ
3 and gGð�3Þ

2 from (23) and (24) by setting m ¼ 3, respectively. Then solve for gGð�3Þ
1 from

(25) by setting m ¼ 3 and l ¼ 1. Finally solve for gGð�3Þ
0 from (25) by setting m ¼ 3 and l ¼ 0.

Step 5 Compute v1; v2 and v3 from (38).
Step 6 Find the dispersion relation. In practice the limit in accuracy of measurement of vR is about 0.1%. Hence for the trun-

cated dispersion relation (35), the approximation in replacing vR by v0 in the formula e ¼ vR=ð2pf Þ will be accept-

able if vR � v0 and the correction terms v1=k;v2=k2
;v3=k3 are all within 1% of v0. Substitution of e � v0=ð2pf Þ in the

approximate formula (35) for the phase velocity vR of the Rayleigh waves leads to the dispersion relation between vR

and the frequency f that we seek. See Remark 6.2 for further discussions.
Remark 6.1. We use MAPLE to carry out the above steps. In the program we apply the central finite difference with a
fourth-order accuracy to approximate the derivatives with respect to v. The formulas of the finite difference for the first, sec-
ond and third derivatives are given by
@g
@v ¼

gðv � 2hÞ � 8gðv � hÞ þ 8gðv þ hÞ � gðv þ 2hÞ
12h

þ Oðh4Þ;

@2g
@v2 ¼

�gðv � 2hÞ þ 16gðv � hÞ � 30gðvÞ þ 16gðv þ hÞ � gðv þ 2hÞ
12h2 þ Oðh4Þ;

@3g
@v3 ¼

gðv � 3hÞ � 8gðv � 2hÞ þ 13gðv � hÞ � 13gðv þ hÞ þ 8gðv þ 2hÞ � gðv þ 3hÞ
8h3 þ Oðh4Þ:
Here g is a given function of v and the step size h is taken to be 0.5 m/s.
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The computation results are shown below. For each of the specified propagation directions, the dispersion relations
between Rayleigh-wave velocity vR (in m/s) and frequency f (in Hz) for the sample half-space endowed with the specified
prestress and three different textures are as follows:

Case 1 h ¼ 0�
vR ¼ 2882:7� 4:248� 107

pf
� 5:224� 1014

p2f 2 þ 4:757� 1021

p3f 3 for Texture ðIÞ; ð39Þ

vR ¼ 2867:3� 4:437� 107

pf
� 4:952� 1014

p2f 2 þ 4:605� 1021

p3f 3 for Texture ðIIÞ; ð40Þ

vR ¼ 2876:4� 2:319� 107

pf
� 7:029� 1014

p2f 2 þ 5:432� 1021

p3f 3 for no texture: ð41Þ
The corresponding dispersion curves are shown in Fig. 5.
Case 2 h ¼ 45�
vR ¼ 2873:1þ 1:879� 108

pf
� 2:586� 1015

p2f 2 þ 1:748� 1022

p3f 3 for Texture ðIÞ; ð42Þ

vR ¼ 2874:2þ 1:849� 108

pf
� 2:591� 1015

p2f 2 þ 1:763� 1022

p3f 3 for Texture ðIIÞ; ð43Þ

vR ¼ 2867:8þ 8:946� 107

pf
� 1:561� 1015

p2f 2 þ 1:035� 1022

p3f 3 for no texture: ð44Þ
The corresponding dispersion curves are shown in Fig. 6.
Case 3 h ¼ 90�
vR ¼ 2873:2þ 3:154� 108

pf
� 3:714� 1015

p2f 2 þ 2:619� 1022

p3f 3 for Texture ðIÞ; ð45Þ

vR ¼ 2881:4þ 3:118� 108

pf
� 3:681� 1015

p2f 2 þ 2:500� 1022

p3f 3 for Texture ðIIÞ; ð46Þ

vR ¼ 2863:8þ 1:408� 108

pf
� 1:920� 1015

p2f 2 þ 1:172� 1022

p3f 3 for no texture: ð47Þ
The corresponding dispersion curves are shown in Fig. 7.
Case 4 h ¼ 135�
vR ¼ 2877:7þ 1:239� 108

pf
� 2:093� 1015

p2f 2 þ 1:414� 1022

p3f 3 for Texture ðIÞ; ð48Þ

vR ¼ 2878:3þ 1:198� 108

pf
� 2:072� 1015

p2f 2 þ 1:384� 1022

p3f 3 for Texture ðIIÞ; ð49Þ

vR ¼ 2872:4þ 2:982� 107

pf
� 1:120� 1015

p2f 2 þ 8:103� 1021

p3f 3 for no texture: ð50Þ
The corresponding dispersion curves are shown in Fig. 8.

Remark 6.2. Dispersion relations (39)–(50) are third-order high-frequency asymptotic formulas. Moreover, in obtaining
these dispersion relations, we have replaced vR by v0 in the formula e :¼ 1=k ¼ v=ð2pf Þ; cf. the discussion under Step 6 just
before Remark 6.1. Table 2 displays the values of the first-, second-, and third-order terms in dispersion relation (45), which
pertains to Rayleigh waves propagating at h ¼ 90� along the treated surface of the 7075-T651 sample. This example is singled
out for illustration, partly because it concerns the real-world sample of our primary interest, and partly because it shows the
largest dispersion among the cases considered. Note that for f ¼ 1 MHz and 2 MHz, we have
jv1j=k� jv2j=k2 � jv3j=k3
;

which suggests that these frequencies are too low for the high-frequency asymptotic formula (45) to be applicable; more-
over, the magnitudes of the correction terms in question render the approximation of replacing vR by v0 in the formula
e ¼ v=ð2pf Þ problematic. In fact, a glance at Eqs. (39)–(50) reveals that both jv2j=ðkjv1jÞ and jv3j=ðkjv2jÞ are of the order
of 107=ðpf Þ, which suggests that these dispersion relations would be applicable for f P 5 or 6 MHz. In practical applications
of the dispersion relations delivered by the method presented above, e.g., in using them in nondestructive evaluation of
stress, it will be of paramount importance to determine the window of frequencies for which the high-frequency asymptotic



Fig. 5. Dispersion curves for propagation direction h ¼ 0� .

Fig. 6. Dispersion curves for propagation direction h ¼ 45� .
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formulas would be applicable, a task that can be achieved by comparing some of the predicted dispersion relations with the
corresponding experimentally-determined dispersion curves.
Remark 6.3. The frequency window within which an nth order dispersion relation is applicable will depend on the order n.
In this section, all dispersion relations are computed to the third order. We could push our computations to the fourth order
if desired. In fact, that should be pursued in applications where extending the lower end of the frequency window, say to
include f ¼ 4 MHz as an applicable frequency, is beneficial.
Remark 6.4. In the example above, the texture is assumed to be homogeneous in all three instances considered and the ver-
tical inhomogeneity of the half space is due to that of the principal stresses alone. Even so, Figs. 5–8 show that dispersion is
influenced by homogeneous texture in the presence of inhomogeneous stress. It can be expected that inhomogeneities in
texture will strongly affect Rayleigh-wave dispersion. For the direct problem, where the relevant texture coefficients are
known functions of depth, this is not an issue, as we may follow exactly the same procedure as what we did in this section
to derive dispersion relations.



Fig. 7. Dispersion curves for propagation direction h ¼ 90� .

Fig. 8. Dispersion curves for propagation direction h ¼ 135� .

Table 2
Comparison of first-, second-, and third-order terms in high-frequency asymptotic formula for vR in 7075-T651 sample.

Texture (I), h ¼ 90�

Frequency (MHz) 1 2 3 4 5 6 7 8 10 20

v1=k (m/s) 100.4 50.2 33.5 25.1 20.1 16.7 14.3 12.5 10.0 5.0

v2=k2 (m/s) �376.3 �94.1 �41.8 �23.5 �15.0 �10.4 �7.7 �5.9 �3.8 �0.9

v3=k3 (m/s) 844.7 105.6 31.3 13.2 6.8 3.9 2.5 1.6 0.8 0.1

vR � v0 (m/s) 568.8 61.7 23.0 14.8 11.9 10.2 9.1 8.2 7.0 4.2
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7. Conclusion

In this paper we consider the direct problem of deriving dispersion relations for Rayleigh waves propagating in various
directions along the surface of a vertically-inhomogeneous prestressed anisotropic medium when all details about the
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prestress and the constitutive equation of the medium are given. For the case where the incremental elasticity tensor can be
written as an isotropic part and a perturbative part, we solve the aforementioned problem by deriving necessary formulas to
implement the general procedure recently developed by Man et al. (2015) to obtain a high-frequency asymptotic formula for
each dispersion relation. We illustrate our solution of the direct problem by deriving dispersion relations for a 7076-T651
aluminum alloy sample with a prestress induced by low plasticity burnishing.

The formulas and procedure presented in this paper can serve as the mathematical foundation of a nondestructive tech-
nique that uses the dispersion of Rayleigh waves to monitor changes in the protective prestress placed on metal parts by
surface treatments such as low plasticity burnishing.
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Appendix A. Formulas for ‘ij in ZPtb
0 ðvÞ

Put
P ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkþ 2lÞðkþ 2l� VÞ

p ; S ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðl� VÞ

p ; R ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðkþ 2lÞðl� VÞðkþ 2l� VÞ

p ;
where k and l are the Lamé constants that pertain to Ciso and V ¼ qð0Þv2. Then
‘11ða55; a66; T
�

22Þ ¼ ðl� VÞa55 þ lða66 þ T
�

22Þ
� �

S=2;

‘22ða22; a23; a33; a44; T
�

22Þ ¼
l

2ðkþ lÞðkþ 3l� VÞ2 V

� ðkþ 2lÞ ðkþ 2lÞðkþ 3lÞ2 � ð3k2 þ 15klþ 20l2ÞV þ 2ðkþ 3lÞV2
� 	

P
h

�ðl� VÞ ðkþ 2lÞðkþ 3lÞ2 � ð2k2 þ 11klþ 13l2ÞV þ ðkþ lÞV2
� 	

S
i
a22

þ lðkþ 2l� VÞ
ðkþ lÞðkþ 3l� VÞV �ðkþ 2lÞðkþ 3l� 2VÞP þ ðkþ 3lÞðl� VÞS½ �a23

þ lðkþ 2l� VÞ
2ðkþ lÞðkþ 3l� VÞ2 V

ðkþ 2l� VÞ ðkþ 3lÞ2 � ð3kþ 7lÞV
� 	

P
h

�ðl� VÞ ðkþ 3lÞ2 � ðkþ 5lÞV
� 	

S
i
a33 þ

kþ 2l� V

2ðkþ lÞðkþ 3l� VÞ2 V

� �2ðkþ 2lÞ 2lðkþ 3lÞ2 � ðk2 þ 9klþ 20l2ÞV þ ðkþ 5lÞV2
� 	

P
h

þ 4l2ðkþ 3lÞ2 � 2lðk2 þ 11klþ 22l2ÞV � ðk2 � 9l2ÞV2 þ ðkþ lÞV3
� 	

S
i
a44

þ l
2ðkþ 3l� VÞ2

�ðkþ 2lÞðkþ l� VÞP þ k2 þ 5klþ 8l2 � ð2kþ 7lÞV þ V2
� 	

S
h i

T
�

22;

‘33ða22;a23;a33;a44;T
�

22Þ¼
ðkþ2lÞðl�VÞ

2ðkþlÞðkþ3l�VÞ2 V
�ðkþ2lÞ ðkþ3lÞ2�ðkþ5lÞV

� 	
Pþl ðkþ3lÞ2�ð3kþ7lÞV

� 	
S

h i
a22

þ ðkþ2lÞðl�VÞ
ðkþlÞðkþ3l�VÞV ðkþ3lÞðkþ2l�VÞP�lðkþ3l�2VÞS½ �a23

þ l�V

2ðkþlÞðkþ3l�VÞ2 V
�ðkþ2l�VÞ ðkþ2lÞðkþ3lÞ2�ð2k2þ11klþ13l2ÞVþðkþlÞV2

� 	
P

h
þl ðkþ2lÞðkþ3lÞ2�ð3k2þ15klþ20l2ÞVþ2ðkþ3lÞV2
� 	

S
i
a33

þ kþ2l
2ðkþlÞðkþ3l�VÞ2 V

2ðkþ2l�VÞ 2lðkþ3lÞ2�ðk2þ11klþ22l2ÞVþ2ðkþ3lÞV2
� 	

P
h

� 4l2ðkþ3lÞ2�2lð3k2þ21klþ38l2ÞVþðk2þ16klþ47l2ÞV2�ðkþ9lÞV3
� 	

S
i
a44

þ kþ2l
2ðkþ3l�VÞ2

2k2þ9klþ11l2�ð3kþ8lÞVþV2
� 	

PþlðkþlþVÞS
h i

T
�

22;
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‘R
12ða26;a36;a45Þ¼

l
2ðkþlÞðkþ3l�VÞV ðkþ2lÞðkþ3lÞðkþ2l�VÞP�ðl�VÞ ðkþ2lÞðkþ3lÞ�ðkþlÞVð ÞS½ �a26

þ lðkþ2l�VÞ
2ðkþlÞðkþ3l�VÞV �ðkþ2lÞðkþ3l�2VÞPþðkþ3lÞðl�VÞS½ �a36

þ kþ2l�V
2ðkþlÞðkþ3l�VÞV �ðkþ2lÞ 2lðkþ3lÞ�ðkþ5lÞVð ÞPþðl�VÞ 2lðkþ3lÞþðkþlÞVð ÞS½ �a45;
‘ I
12ða25; a35; a46Þ ¼

l� V
2ðkþ lÞðkþ 3l� VÞV ðkþ 2lÞðkþ 3lÞ � ðkþ lÞV � lðkþ 2lÞðkþ 3lÞðkþ 2l� VÞR½ �a25

þ ðl� VÞðkþ 2l� VÞ
2ðkþ lÞðkþ 3l� VÞV �ðkþ 3lÞ þ lðkþ 2lÞðkþ 3l� 2VÞR½ �a35

þ kþ 2l� V
2ðkþ lÞðkþ 3l� VÞV 2lðkþ 3lÞ þ ðkþ lÞV � lðkþ 2lÞ 2lðkþ 3lÞ � ðkþ 5lÞVð ÞR½ �a46;
‘R
13ða25; a35; a46Þ ¼

ðkþ 2lÞðl� VÞ
2ðkþ lÞðkþ 3l� VÞV ðkþ 3lÞðkþ 2l� VÞP � lðkþ 3l� 2VÞS½ �a25

þ l� V
2ðkþ lÞðkþ 3l� VÞV �ðkþ 2lÞðkþ 2l� VÞðkþ 3l� 2VÞP½

þl ðkþ 2lÞðkþ 3lÞ � 2ðkþ 3lÞV þ 2V2
� 	

S
i
a35

þ kþ 2l
2ðkþ lÞðkþ 3l� VÞV ðkþ 2l� VÞ 2lðkþ 3lÞ � ðkþ 5lÞVð ÞP½

�l 2lðkþ 3lÞ � ð3kþ 11lÞV þ 4V2
� 	

S
i
a46;
‘ I
13ða26; a36; a45Þ ¼

lðkþ 2lÞ
2ðkþ lÞðkþ 3l� VÞV �ðkþ 3l� 2VÞ þ ðkþ 3lÞðl� VÞðkþ 2l� VÞR½ �a26

þ l
2ðkþ lÞðkþ 3l� VÞV ðkþ 2lÞðkþ 3lÞ � 2ðkþ 3lÞV þ 2V2

h
�ðkþ 2lÞðl� VÞðkþ 2l� VÞðkþ 3l� 2VÞR�a36

þ kþ 2l
2ðkþ lÞðkþ 3l� VÞV 2lðkþ 3lÞ � ð3kþ 11lÞV þ 4V2

h
�ðl� VÞðkþ 2l� VÞ 2lðkþ 3lÞ � ðkþ 5lÞVð ÞR�a45;
‘R
23ða24; a34Þ ¼

kþ 2l
ðkþ lÞðkþ 3l� VÞV ðkþ 2l� VÞ 2lðkþ 3lÞ � ðkþ 4lÞVð ÞP � lðl� VÞ 2ðkþ 3lÞ � 3Vð ÞS½ �a24

þ kþ 2l� V
ðkþ lÞðkþ 3l� VÞV �ðkþ 2lÞ 2lðkþ 3lÞ � ðkþ 6lÞV þ V2

� 	
P þ lðl� VÞ 2ðkþ 3lÞ � Vð ÞS

h i
a34;
‘I
23ða22; a23; a33; a44; T

�
22Þ ¼

lðkþ 2lÞðl� VÞ
2ðkþ lÞðkþ 3l� VÞ2

2� k2 þ 4klþ 5l2 � ðkþ 3lÞV
� �

R
� 

a22

þ lðl� VÞ
ðkþ lÞðkþ 3l� VÞ �1þ ðkþ 2lÞðkþ 2l� VÞR½ �a23

þ lðl� VÞðkþ 2l� VÞ
2ðkþ lÞðkþ 3l� VÞ2

2� k2 þ 4klþ 5l2 � ðkþ 3lÞV
� �

R
� 

a33

þ ðkþ 2lÞðkþ 2l� VÞ
2ðkþ lÞðkþ 3l� VÞ2

�2ðkþ 5l� 2VÞ þ 2lðk2 þ 5klþ 8l2Þ
��

�ðk2 þ 8klþ 19l2ÞV þ ðkþ 5lÞV2
	

R
i
a44

þ lðkþ 2lÞ
2ðkþ 3l� VÞ2

�2þ k2 þ 4klþ 5l2 � ðkþ 3lÞV
� �

R
� 

T
�

22:
We have used MATHEMATICA to carry out the computations of some expressions above.
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Appendix B. Details on constitutive equation of 7075-T651 aluminum sample

In this appendix we provide the details that complete the constitutive equation (34) of the 7075-T651 sample studied in
Section 6.

B.1. Material parameters

In our computations we take k ¼ 60:79 GPa and l ¼ 26:9 GPa, which correspond to the mean values of l and Young’s
modulus E ¼ 71:43 GPa obtained by Radovic, Lara-Curzio, and Riester (2004) in their RUS (resonant ultrasound spec-
troscopy) measurements on sixteen 7075-T651 samples. As for the other 10 parameters, we are not aware of any experimen-
tally determined value reported in the literature. In our illustrative example, we adopt the values predicted by the Man–
Paroni model (Man, 1999; Man & Paroni, 1996; Paroni & Man, 2000) from second-order and third-order elastic constants
of single-crystal pure aluminum reported by Thomas (1968) and Sarma and Reddy (1972), respectively: a ¼ �16:49 GPa,
b1 ¼ 0:89; b2 ¼ 0:96; b3 ¼ �2:63; b4 ¼ �4:54; b1 ¼ �3:32; b2 ¼ �0:61; b3 ¼ 0:14; b4 ¼ 1:54 and a ¼ 12:10.

B.2. Texture coefficients

W 0
400 ¼ 0:00393;W 0

420 ¼ �0:00083;W 0
440 ¼ �0:00233;W 0

600 ¼ 0:00025;W 0
620 ¼ �0:0004;W 0

640 ¼ �0:00033, and W 0
660 ¼

0:00035.

B.3. Components of tensors U;H, and W

All components of tensors below refer to the coordinate system OXYZ defined in Section 6.
An rth order tensor H is said to be harmonic if it is totally symmetric and traceless, i.e., its components Hi1 i2 ...ir satisfy

Hi1 i2 ...ir ¼ Hisð1Þ isð2Þ ...isðrÞ for each permutation s of f1;2; . . . ; rg, and trj;kH ¼ 0 for any pair of distinct indices j and k. For example,
for r ¼ 3 we have H112 ¼ H121 ¼ H211, etc. from total symmetry, and H111 þ H212 þ H313 ¼ 0, etc. from the traceless condition.

The fourth-order tensor U and the sixth-order tensor H are harmonic. All the non-trivial components of U can be obtained
from the following five through the total symmetry of and the traceless condition on the harmonic tensor U:
U1122 ¼W 0
400 �

ffiffiffiffiffiffi
70
p

W 0
440 cos 4h; U1133 ¼ �4W 0

400 þ 2
ffiffiffiffiffiffi
10
p

W 0
420 cos 2h;

U2233 ¼ �4W 0
400 � 2

ffiffiffiffiffiffi
10
p

W 0
420 cos 2h; U1112 ¼ �

ffiffiffiffiffiffi
10
p

W 0
420 sin 2hþ

ffiffiffiffiffiffi
70
p

W 0
440 sin 4h;

U2212 ¼ �
ffiffiffiffiffiffi
10
p

W 0
420 sin 2h�

ffiffiffiffiffiffi
70
p

W 0
440 sin 4h:
The non-trivial components of H can be obtained from the following seven by using the total symmetry of and the trace-
less condition on H:
H222211 ¼ �W 0
600 �

ffiffiffiffiffiffiffiffiffi
105
p

15
W 0

620 cos 2hþ
ffiffiffiffiffiffi
14
p

W 0
640 cos 4hþ

ffiffiffiffiffiffiffiffiffi
231
p

W 0
660 cos 6h;

H222233 ¼ 6W 0
600 þ

16
ffiffiffiffiffiffiffiffiffi
105
p

15
W 0

620 cos 2hþ 2
ffiffiffiffiffiffi
14
p

W 0
640 cos 4h;

H333311 ¼ �8W 0
600 þ

16
ffiffiffiffiffiffiffiffiffi
105
p

15
W 0

620 cos 2h; H333322 ¼ �8W 0
600 �

16
ffiffiffiffiffiffiffiffiffi
105
p

15
W 0

620 cos 2h;

H122222 ¼
ffiffiffiffiffiffiffiffiffi
105
p

3
W 0

620 sin 2hþ 2
ffiffiffiffiffiffi
14
p

W 0
640 sin 4hþ

ffiffiffiffiffiffiffiffiffi
231
p

W 0
660 sin 6h;

H122233 ¼ �
8
ffiffiffiffiffiffiffiffiffi
105
p

15
W 0

620 sin 2h� 2
ffiffiffiffiffiffi
14
p

W 0
640 sin 4h; H123333 ¼

16
ffiffiffiffiffiffiffiffiffi
105
p

15
W 0

620 sin 2h:
The components of the sixth-order tensors WðiÞðwÞ are given in terms of those of the harmonic tensor U by the following
formulae:
Wð1Þijklmn ¼ Uijkldmn; Wð2Þijklmn ¼ Uklmndij þUijmndkl;

Wð3Þijklmn ¼ dikUjlmn þ dilUjkmn þ djkUilmn þ djlUikmn;

Wð4Þijklmn ¼ dimUjnkl þ dinUjmkl þ djmUinkl þ djnUimkl þ dkmUlnij þ dknUlmij þ dlmUknij þ dlnUkmij;
where dij is the Kronecker delta.
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