Math 372 Exam 1 Total pages: 2 Total points: 45 Instructor: Yi Wang | N | Name(Print) | Section | Grade | | |----|---------------------|--|---|----| | A | Attention: Ans | ${f swers}$ without supporting work structure NO credits. | shown on the paper will | | | 1. | ` = , | he square of every real number x is f this statements, and find its convers | _ | n | | 2. | | T, P, Q , and T are points on a line such point of \overline{KT} , $PK=8$, and $PT=16$, | | r; | | 3. | | following relationships among three solutions to $\angle 3$, and $\angle 2$ and $\angle 3$ are | | Ю | | 4. | tively, 48 and | cotractor Postulate, the coordinates of l 115 with respect to some half-plane or dinate of the bisector of $\angle MCN$ be | containing \overrightarrow{CM} and \overrightarrow{CN} . What | | | 5. | Let two lines them. | ℓ , and m lie in the plane P , discuss | the possible relations between | n | | | Prove | | | | | | | \longrightarrow | | \longleftrightarrow | * | |----|--------|------|-----|----------|----|-------------|---------------|-------------------|---------------|-----------------------|----| | C | Dwarra | +ha+ | for | 1 _/ | D | ΛD | | ΛĎ | | A D | , | | U. | rrove | unat | 101 | $A \neq$ | D. | AD | $\overline{}$ | AD | $\overline{}$ | AD | ٠. | 7. Prove that if $$A$$, B , and C are any three distinct, collinear points, then either $A-B-C$, $A-C-B$, or $B-A-C$. 8. Prove two angles that are complementary to the same angle have equal measures. - 9. Show that the opposing ray of a given ray is unique. - 10. Consider the following axiomatic system: Undefined terms: point, line AXIOMS: - 1. Each line is a set of four points. - 2. Each point is contained by precisely two lines. - 3. Two distinct lines that intersect do so in exactly one point. - 1) Find two distinctly different models for this set of axioms. 2) Is this system categorical?