Math 372 Exam 2 Total pages: 2 Total points: 50 Instructor: Yi Wang

Name(Print)	Section _		$\operatorname{Grade}_{}$	
Attention: A	Answers without	supportin	g work shown	on the pap	er will
receive NO credits.					

1. (5 points) Prove the statement: If PA = PB and M is the midpoint of segment \overline{AB} , then line \overline{PM} is perpendicular to segment \overline{AB} .

2. (5 points) If WS = WT and RS = TU, with R - S - T - U, prove that $\angle R \cong \angle U$.

3. 1) Use the Exterior Angle Inequality to prove the following statement: the sum of the measures of any two angles of a triangle is less than 180.

2) Use Saccheri-Legendre Theorem to prove that a triangle can have at most one right or obtuse angle.

4. In the following figure, D is the midpoint of \overline{AC} and \overline{BE} as well. Show that the angle sum of ΔABC equals to the angle sum of ΔEBC .

5. Use Scalene Inequality to prove that the hypotenuse of a right triangle has measure greater than that of either leg.

6. Use the triangle Inequality to prove that for any three points A, B and C,

$$AB - BC \le AC \le AB + BC$$
.

7. Suppose that \overline{AM} is the median to side \overline{BC} of ΔABC . Prove

$$AM < \frac{1}{2}(AB + AC)$$

using the Triangle Inequality.

8. Suppose that \overline{AM} is the median to side \overline{BC} of ΔABC . AB=30 and AC=38. Use Triangle Inequality to show that

$$4 < AM < 34$$
.

9. Prove or disprove: in $\triangle RST$ with angle measures as indicated, $RS \ge RT$.

