Math 372 Exam 4 Total pages: 5 Total points: 70 Instructor: Yi Wang

Name(Print)	Section	Grade
Attention: Answers	without supporting work	shown on the paper will
receive NO credits.		

1. In $\triangle ABC$, $\overrightarrow{DE} \| \overrightarrow{BC}$ and certain measurements are as indicated. Find x and y.

2. Given a right triangle $\triangle ABC$, the lengths of the two legs are a and b respectively and the length of the hypotenuse is c. Draw an altitude from the vertex C to the hypotenuse. The two segments on the hypotenuse cut off by the altitude are of lengths c_1 and c_2 respectively with c_1 close to vertex B.

Show

$$h^2 = c_1 c_2.$$

3. Prove the midpoint of the hypotenuse of a right triangle is equidistant from the three vertices of the right triangle using the **formula for the length of a median-the Cevian Formula**.

4. Prove the Secant-Tangent Theorem. If a secant \overrightarrow{PA} and tangent \overrightarrow{PC} meet a circle at the respective points A, B, and C (point of contact), then in the following figure,

$$PC^2 = PA \cdot PB$$

$$PC^2 = PA \cdot PB$$

5. The Power of a Point The power of a point P with respect to a circle with center O and radius r is the real number

$$Power(P) = PO^2 - r^2$$

- (a) Prove that if P lies outside circle O and \overrightarrow{PT} is tangent to the circle at T, then $\mathrm{Power}(P) = PT^2.$
- (b) Identify the set of all points P for which

$$Power(P) = k,$$

where k is a constant.

6. Golden Isosceles Triangle Isosceles triangle $\triangle ABC$ lies within another isosceles triangle $\triangle ABD$ (AB = AC and AD = BD). In addition, it is given that $\triangle ACD$ is isosceles with AC = CD

- (a) Show that this can happen (and will happen) precisely when ΔABC is a **Golden Isosceles Triangle**, that is, when $AB = \tau BC$, where $\tau = \frac{1}{2}(1+\sqrt{5})$ -the Golden Ration. (Hint: Use similar triangles to show that $AB^2 = BC \cdot BD = BC^2 + BC \cdot AB$, which can be converted into the equation $x^2 = x + 1$ where x = AB/BC.
- (b) Show that $\theta = 72$ and $\phi = 36$ in the figure.
- (c) Using trigonometry in $\triangle ABC$, show that $\sec 72^o = 2\tau$ and $\cos 36^o = \tau/2$.

7. The Geometry of the Cario Tile The following is a picture of so called Cario tile with measures as indicated.

Show from the laws of Sines and Cosines that $MD = \sqrt{7}$, $MC = (\sqrt{7} + 1)/\sqrt{2}$, and $EC = \sqrt{7} + 1$. It then follows that $m\angle E = m\angle C = 90^0$ and $m\angle ABC \approx 114^0$. Find $m\angle EDC$ using these estimations.