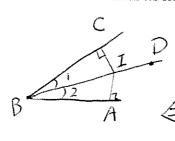
Math 372 Exam 3 Total pages: 3 Total points: 40 Instructor: Yi Wang

Name(Print)_____ Section____ Grade_____Attention: Answers without supporting work shown on the paper will receive NO credits.

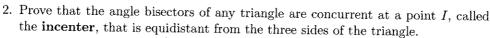
Instruction: Please answer Problems 1-5 within the context of absolute geometry. Problem 6-8 can be answered within the Euclidean geometry.

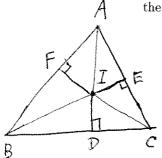
1. Prove that if I is any point on the bisector \overline{BD} of $\angle ABC$, then I is equidistant from its sides, and conversely.



 \Rightarrow) let I be a point on \overline{BD} , and ICLBC, IALBA Need to prove IC=IA. $\angle 1^{2}\angle 2$ } $\Rightarrow \triangle CBI \supseteq \triangle ABI \Rightarrow IC=IA$

E) Conversely, Let IC=IA, ICIBC, IALBA, need to prove <1922 △CBI 3 △ABI by HL, SO <1922.





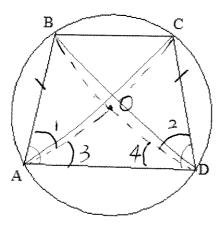
Let DABC be given, at IA is the angle bisector of <BAC, and ass they is the point I. Let IDIBC, IFLAB, IEIAC.

IF=ID Since BI is the angle bisector } > Together

IF=IE since AI is the angle bisector }

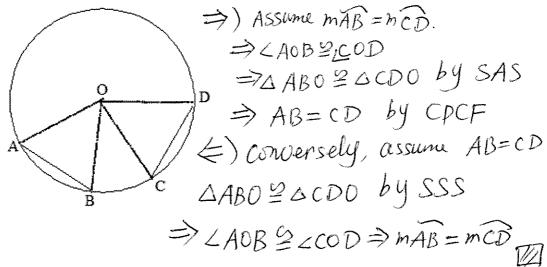
they give IE=ID => which shows IC is the angle bisector of

3. A circle passes through the vertices of $\Diamond ABCD$, and AB = CD. Prove that $\triangle BCA$ by problem ABCA = BCA.

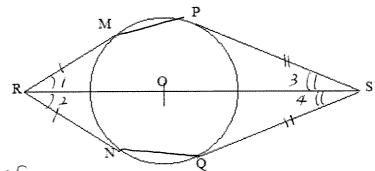


Let the center of the circle, $\triangle OAB \cong \triangle ODC$ by SSS $\angle 1 \cong \angle 2$ by CPCF $\triangle OAD iSVESOcoles triangle$ $\Rightarrow \angle 3 \cong \angle 4$ $\Rightarrow \angle BAD \cong \angle CDA. m$

4. Prove two chords of a circle are congruent iff they subtend arcs of equal measure. (You must establish $\widehat{mAB} = \widehat{mCD}$ iff AB = CD. Recall that $\widehat{mAB} = m\angle AOB$.)



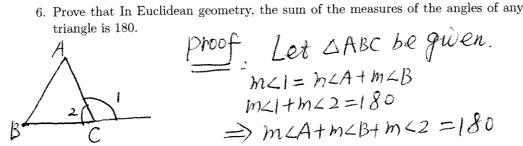
5. Tangents are drawn to circle O form points R and S, which lie on a line passing through the center O. If M, N, P, and Q are the points of contact, prove $\widehat{mMP} = \widehat{mNQ}$.



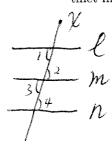
Proof It suffices to show MP=NQ by prob. 4.

Note RM=RN, $\langle 1 \geq \langle 2 \rangle$, $\langle 3 \geq \langle 4 \rangle \rangle \Rightarrow \langle RSPM \leq RSQN \rangle$ RS=RS by SASAS.

$$\Rightarrow MP = NQ \quad b_y^2 \quad CPCF.$$



7. Transitivity of Parallelism in Euclidean Geometry Prove that for three distinct lines ℓ , m and n, if $\ell || m$ and m || n, then $\ell || n$.



Let
$$\chi$$
 be a line transverses ℓ , m , and n .

$$\frac{1}{1} \ell \ell$$

$$\ell | 1m \Rightarrow 41 \approx 24 \approx 2$$

$$\ell | 1m \Rightarrow 41 \approx 24 \approx 2$$

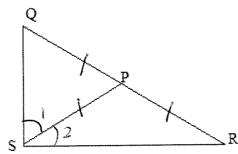
$$m | 1n \Rightarrow 43 \approx 24$$

$$4 \approx 12 \approx 4 \Rightarrow 211$$

$$m | 1n \Rightarrow 43 \approx 24$$

$$4 \approx 22 \approx 24$$

8. Prove that in Euclidean geometry, if PQ=PR=PS, and Q-P-R then ΔQRS



is a right triangle.

Proof:
$$QP = SP \Rightarrow \Delta QSP$$
 is isoceles \Rightarrow
 $PS = PR \Rightarrow \Delta PSR$ is usoceles