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Attention: Answers without supporting work shown on the paper will
receive NO credits,

Instruction: Please answer Problems 1-5 within the context of absolute geometry.
Problem 6-8 can be answered within the Euclidean geotetry.

1. Prove that if [ is any point on the bisector BD of £ ABC, then I s equidistant
from its sides, and conversely.
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2. Prove that the angle bisectors of any triangle are concurrent at a point I, called
A the incenter, that is equidistant from the three sides of the triangle.

Let BABC bC fen, &b T/ s the aagle busecton of <BAC
o TR ISHe agle bisector of LABC, aud o tuy |
ntersects et the pomt I Let IDLBC, IFLIAB TF1AC
&2 IF=LD S BT s {:ii:é wg;éﬁ bisectsr =7 e

D o LFE=1rfF Sww AL i ﬁuaofgf& 5;‘3_@6&@" i : f% |
& thoy pe TE=ID => Whil Shos IC (s the oyl bisethr of
3. A circle pasées ﬁhrough the vertices of DABCD, and AB = CD. Prove that“m BCA ‘gff pres

mLA = msD. @1&.@

L gé\//-{;ﬁg Conies @f the curtle
AQAB24A0DC by S3S
Ll 2o [aj CpCF

ACAD f"S%gﬁ“@C@_S @cmjie
"~“?4§?54
=SLBADD DY 2




4. Prove two chords of a c1rcle are congruent iff they subtend arcs of equ&l measure.
{You must establish . AB = mOD iff AB = CD. Recall that mAB = m/AQB.)
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5. Tangents are drawn to circle O form points R and S, which lie on a line passing
through the center O. If M, N, P, and ( are the points of contact, prove mM P =
mN (.
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6. Prove that In Euclidean geometry, the sum of the measures of the angles of any
triangle is 180.
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7. Transitivity of Parallelism in Euclidean Geometry Prove that for three dis-
tinet lines £, m and n, if £)m and mijn, then £||n.
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8. Prove that in Euclidean geometry, if PQ = PR = PS, and @~ P~ R then AQRS
Q

is a right triangle.
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