
Math 372 Exam 1 Total pages: 2 Total points: 35 Instructor: Yi Wang

Name(Print)_____ Section ____ Grade_____Attention: Answers without supporting work shown on the paper will receive NO credits.

3 points) The square of every real number x is nonnegative. Find the if-then conditional of this statements, and find its converse and contrapositive.
 if XER, then X²>0

if $x \in \mathbb{R}$, then $\chi^2 > 0$ Converse: if $\chi^2 > 0$, then $x \in \mathbb{R}$. Contrapositive: if $\chi^2 < 0$, then $x \notin \mathbb{R}$

3 2. Given that K, P, Q, and T are points on a line such that P - K - Q and P - K - T, Q is the midpoint of \overline{KT} , PK = 8, and PT = 16, find QT.

- 3. Consider the following relationships among three angles: $\angle 1$ is supplementary to $\angle 2$ and complementary to $\angle 3$, and $\angle 2$ and $\angle 3$ are a linear pair. Find $m\angle 1$. $\frac{m}{2} + \frac{m}{2} = \frac{1800}{3}$ $\frac{m}{2} + \frac{m}{2} = \frac{1800}{3}$
 - 4. Under the Protractor Postulate, the coordinates of rays \overrightarrow{CM} and \overrightarrow{CN} , are, respectively, 48 and 115 with respect to some half-plane containing \overrightarrow{CM} and \overrightarrow{CN} . What must the coordinate of the bisector of $\angle MCN$ be?
- $\frac{15.5}{6}$ = $48+\pm \times 67=81.5$
 - \mathcal{S} 5. Let two lines ℓ , and m lie in the plane P, discuss the possible relations between them. \mathcal{L} // \mathcal{M}
 - 2) l'intersects m at one unique point. 3) l=m (coincident)

4

6. Prove that for $A \neq B$, $\overline{AB} \subseteq \overrightarrow{AB} \subseteq \overleftrightarrow{AB}$.

A B

 $\overline{AB} = \{X : A - X - B, X = A, or X = B \}$ $\overline{AB} = \{X : A - X - B, A - B - X, X = A, or X = B \}$ $\overline{AB} = \{X : X - A - B, A - X - B, A - B - X, X = A, or X = B \}$

Then it is clear $\overrightarrow{AB} \subseteq \overrightarrow{AB} \subseteq \overrightarrow{AB}$

4

7. Prove that if A, B, and C are any three distinct, collinear points, then either A-B-C, A-C-B, or B-A-C.

Let a coordinate system be correspondent to line AB, such

that A[a], B[b], C[c] & as garanteed by the Ruler Postulate, then we must have either a<b<c, or a<c<b, or b<a<c>a<c
Then each case corresponds to A-B-C, A-C-B, or B-A-C respectively.

3

 $8. \ \,$ Prove two angles that are complementary to the same angle have equal measures.

tet $m \le 1 + m \le 3 = 90$ and $m \le 2 + m \le 3 = 90$ then by simple algebraic operation, we must have $m \le 1 = m \le 2$

OC B A

9. Show that the opposing ray of a given ray is unique.

Let BC be the opposing ray of BA, by definition (C-B-A.

> Assume BB is another opposing ray of BA, then again we implies obtain D-B-A. Thus shows c and D are on AB, which means

10. Consider the following axiomatic system: $\overrightarrow{BC} = \overrightarrow{BB}$. Undefined terms: point, line

AXIOMS:

- 1. Each line is a set of four points.
- 2. Each point is contained by precisely two lines.
- 3. Two distinct lines that intersect do so in exactly one point.
- 1) Find two distinctly different models for this set of axioms.

model

2) Is this system categorical?

